These 'STATORS IN Topics
ORDER OF HEIGHT? |
e
1) How can we sort data in an array?
a) Selection Sort
b) Insertion Sort
SEVERAL HOURS LATER ...
: i ?
T %%ﬁ NOTE o SELET 2) How can we search for an element in an array*
To PROVING A : STUDENTS AS MOVERS a) Linear Search
e e B o) Binarv Search
THE cosﬁ.'r OF SWAP ¢ .) Inary cearc
IS SIgNIFicANTLY Y
oRE THAN THE
gs-? oF CoMPARE ~
Slides #15
Sections 9.1-9.5
Sorting and Searching
\02/08/11 CMPT 125/128 © Dr. B. Fraser 1 02/08/11
Sorting
» Sorting is..
» Examples:

- Sorting an array of names into alphabetical order.
. - Sorting an array of stock prices into descending
Sorting order.

* It's a classic computer science problem:
- Theoretical analysis possible (later).

- Many possible sorting algorithms.
- Generally algorithms evaluated...

3 02/08/11

02/08/11

Selection sort

 Algorithm Idea:

- Search list to find the...

» Exchange element with first item.

- Search list to find the...

» Exchange element with second item.

- Repeat until all items are in their place.

02/08/11

Selection sort

hen working with vector v1:
vi.size() is...
(

void selectionSort (int data[], int size)

/I Work our way through the list
for (int index = 0; index < size-1; index++) {

}

int minldx = index;
/I Find the next smallest value

unsigned 0) — 1 = ~4 billion.
Use:
...< static_cast<int>(v1.size()) - 1;...

for (int scan = index+1; scan < size; scan++){

if (data[scan] < data[minldx]) {
minldx = scan;

}

/I Swap the values

int temp = data[minldx];
data[minldx] = data[index];
data[index] = temp;

int main() {
const int POINTS = 5;
int sortMe[] = {5, 10, 1, 18, 3};

selectionSort(sortMe, POINTS);

}

1
‘02/08/1’1

sortingExample.cpp

7

Selection sort example

» Sort this list using selection sort:
816 96420

02/08/11

Insertion sort

* Insertion Sort functions by:

 Algorithm description:
- Skip the 1 element; it's already a sorted sub-list!

- Take the 2™ element, insert it into the sorted sub-list.
- Take the 3™ element, insert it into the sorted sub-list.

- Repeat until...
has been inserted into the sorted sub-list.

02/08/11

Insertion sort example

Insertion sort

» Sort this list using insertion sort:
816 96420

02/08/11 9

Criteria for selecting a sort algorithm

» Simplicity:
Simple algorithms are easier to...

Faster algorithms generally win out for..
- Ex: all SFU students, all Canadians seniors.
* # Item Comparisons
* # Item Swaps

- How much memory is needed for each algorithm?
- Some sort algorithms use large amounts of memory.

02/08/11 11

void insertionSort (int data[], int size) {
for (int index = 1; index < size; index++) {
int key = data[index];
int position = index;

/I Shift larger values to the right
while ((position > 0)
&& (key < data[position-1]))

data[position] = data[position-1];
position--;

int main() {
const int POINTS = 5;

/I Put the key into the hole we made int sortMe[] = {5, 10, 1, 18, 3};

data[position] = key;
} insertionSort(sortMe, POINTS);
}

‘02/08/11 sortingExample.cpp 10

Review

» Which sort algorithm most resembles sorting a hand
of cards as you are dealt cards one at a time?

* Draw out sorting the following using selection sort.
Show only the swaps, and what is already sorted.
4 8 1 0 7

02/08/11 12

Searching

02/08/11

About searching

* There are many search algorithms.
- Generally, we want the one which...

* A search can result in:
- Finding the target element in the search pool
(and returning its index), or

- Proving that the target element is...

02/08/11

Searching

* Searching involves...

- Ex: “Find the number 25 in the collection”

- or sometimes: “Is the number 25 in the collection?”

- and commonly: “Find Bob's phone number.”
 Definitions:

- Target element:

- Search pool:

02/08/11 14

Linear search

e Linear search:
until have found the target element or
have examined all elements.

* It's “linear” search because:
- start with the first element and linearly advance to
the last element.

02/08/11 16

Linear search example

Linear search

Val:

Given the following search pool:
8 19 71 5 16 27 38 40 0 56 26 10 24 30

Use linear search to find the following:

- 24
-8
- 28

Count how many comparisons were needed.

/l Find the index of the target element.
/I data: Elements to search.

Il size: Number of elements in data]]

/I target: Value to find.

/I returns: Index of target; -1 for not found.
int linearSearch (int data[], int size, int target)

{

I/ Cycle through all elements

for (int index = 0; index < size; index ++) {
/I When we find the item, return it's index.

if (data[index] == target) {
return index;
}

/I ltem not found:
return -1;

02/08/11

int main() {
const int N = 5;
int myData[] = {5, 10, 1, 18, 3};

int pos = linearSearch(myData, N, 18);
cout << "Index " << pos;

17 ‘ 02/08’1 1

18

Binary search introduction

Limitation:

Binary search works on...

Idea:

Each comparison...

Guess 50, it's less than that: [1

Guess 25, it's more than that: [26 ...
Guess 37, it's less than that: [26 ...
Guess 31, it's less than that: [26 ...
Guess 28, it's more than that: [29 ...

Guess 30, it's less that that: Answer is 29!

Similar to how to play "guess the number [1...100]".

49]
49]
36]
30]
30]

Binary search description

* Binary search works as follows:
- Start by looking at the middle element of the set.

« If it's equal to the target, you are done!
* If mid-element is less than the target...

* If mid-element is greater than the target...

- Repeat the above until:

* You've found the element; or

* There are...

02/08/11

19 02/08/11

20

Binary search example Middle Formula:

(min + max) / 2

Given the following search pool:
ldx: 0123 4 5 6 7 8 9 10 11 1213
Val: 058 10 16 19 24 26 27 30 38 40 56 71

Use binary search to find the following:
- 56

-0
- 28
* Count how many comparisons were needed.

02/08/11

Linear vs binary search

» Comparisons:
- requires a sorted list.

- is slower (on average).
- is easier to understand,
implement and debug.

» Algorithm Selection:
- If it's easy to keep the data sorted or
you'll be searching a lot, use binary search.

- Otherwise, linear search may be better.

02/08/11

Binary search code

int binarySearch (int data[], int size, int target)

int min=0, max=size-1, mid=0;
/I Narrow in the [min, max] bounds

while (min <= max) {
mid = (min+max) / 2

if (data[mid] == target) {

return mid;
}else {

if (target < data[mid]) {

max = mid-1;
}else {
min = mid+1;
}
}

return -1; // Not found,

return -1.

int main() {
constint N = 5;
int myData[] = {1, 3, 5, 10, 18};

int pos = binarSearch(myData, N, 18);
cout << "Index " << pos;

‘02/08/}1

22

Review

* Fill in the following table for number of comparisons
required to find elements in the following list.

257 811

Linear Search

Binary Search

Find 7

Find 11

Find 6

02/08/11

24

Summary

» Searching and Sorting are two classic computing
science problems.
» Sorting:
- Selection sort: Finds next smallest item.
- Insertion sort: Sort next item into existing list.
» Searching:
- Linear: Look at each element to find item.

- Binary: Look half way through sorted list to find
which half target element could be in.

Runtime efficiency (time) is how most algorithms are
characterized.

‘ 02/08/11

25

