
05/07/11 1

Introduction to Classes and Objects
How to manage data and actions together.

Slides #10: Chapter 7.1-7.5

CMPT 125/128, � Dr. B. Fraser 05/07/11 2

Topics

1) What is an object? What is a class?
2) How can we use objects?
3) How do we implement the functions of a class?

05/07/11 3

Objects

05/07/11 4

Procedural Programming

� Procedural Programming
�

�

Bond

45

name1

age1
Barney

15

name2

age2

Data (variables):
int growOlder(int age);

void showInfo(string name, int age);

Functions:

What ties together “Bond” and 45?

05/07/11 5

Object Oriented Programming

� Object Oriented Programming
�

�

� The objects ties together its data.

void growOlder();

Barney

15

name

age

void showInfo();

Person Object 2

void growOlder();

Bond

45

name

age

void showInfo();

Person Object 1

05/07/11 6

Object

� Object:

data and functions within a single unit.

void growOlder();

Bond

45

name

age

void showInfo();

Person Object 1

Data stored in

(or attributes).

Functions are called

(or methods).

05/07/11 7

Classes and Objects
�

� Think of it as the blue print for a house.
The blue print lays out the details for a type of house.

�

� like houses which have been built from the blue print.

Class
Circle

Object
myCircle1

Object
pizzaShape

Object
bigDot

myHouse yourHouse dogHouse

05/07/11 8

Review

� How does object oriented programming help
organize the program's data?

� Write a very short sentence which express the
relationship between objects and classes.

05/07/11 9

Implementing a class.

05/07/11 10

Circle Class

Model a circle using an object
�

� Store the circle's radius.
�

� Set its radius.
� Calculate its area.

Class Name
Circle

Member variables
double radius;

Member functions
void setRadius(double r) {

radius = r;
}
double getArea() {

return 3.15 * pow(radius, 2);
}

void setRadius();

5.7radius

double getArea();

Circle Object 1

05/07/11 11

Circle class

class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

General Form:
class <Name> { ... };

 Class definition inside {...}

Note that...

Very common error!

05/07/11 12

Circle class

class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

private:
...

public:
...

control if the items listed below it are:
private:
public: usable inside and outside the

class.

Note colon (':') after private or public.

05/07/11 13

Circle class

class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

Member Variables:

Usually they are private.

Can have any number of member
variables.

05/07/11 14

Circle class

class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

Member Functions:
usually public so they can be called
from both inside and outside the class.

Member functions can access...

Able to declare any number of member
functions.

05/07/11 15

Using the Circle class

class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

int main() {
// Create the 2 pizza objects (Circles)
Circle pizzaSmall,

 pizzaMed;

// Setup the size
pizzaSmall.setRadius(6.0); // 12"
pizzaMed.setRadius(7.0); // 14"

// Output the area
cout << "Size of small: "

<< pizzaSmall.getArea() << endl;
cout << "Size of med: "

<< pizzaMed.getArea() << endl;

return 0;
}

Size of small: 113.4
Size of med: 154.34

Note we only call the

we never access the
private attributes.

05/07/11 16

Member access
class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

int main() {
// Create the 2 pizza objects (Circles)
Circle pizzaSmall,

 pizzaMed;

// Setup the size
pizzaSmall.setRadius(6.0); // 12"
pizzaMed.setRadius(7.0); // 14"

...
}

Inside the class, we can access

public or private,
no dot-operator ('.') required.

Outside the class, access public
member functions using:
object.memberFunct().

or public member variables using:
object.memberVar

05/07/11 17

Review
� Complete this code by creating Circle object named

cropCircle1 of radius 100, and output its area.
int main () {

return 0;
}

05/07/11 18

Encapsulation

05/07/11 19

Encapsulation
� Interface:

�

� Encapsulation:
�

� External code must use the class' interface.
� Benefit: Don't have to understand internals of the

class in order to use it.
� Ex: cin/cout

� Example:
� With the Circle class, you cannot directly change the

value of radius; you must use setRadius().
05/07/11 20

Encapsulation: limited access

� An object's attributes are most often...
� How can we access a private member variable?

Ex: Read a circle's radius?
� From outside the class we cannot do:

Circle myCircle;
myCircle.setRadius(42);
cout << myCircle.radius;

(and is impossible
if radius is a

private member).

05/07/11 21

Accessors and Mutators

� Accessors

� Usually of the form getX(), where X is the attribute.
� Also called getters.
� Ex: getRadius(), getHeight(), getColour().

� Mutators

� usually of the form setX(), where X is the attribute.
� Also called setters.
� Ex: setRadius(), setHeight(), setColour()
� Have mutators verify new value is valid!

05/07/11 22

Demo & Review

� Assume you are given a complete Die class
implementation. Use it to create a 6 sided die; roll it
and output the value.

Class name:
Die
Private Member Variables:
int numSides;
int faceValue;
Public Member Functions
void setNumSides (int value);
int getNumSides();
int roll();
int getFaceValue();

05/07/11 23

UML Class Diagram

�

� UML: Unified
Modelling Language Die

- numSides : int
- faceValue : int
+ setNumSides (value : int) : void
+ getNumSides() : int
+ roll() : int
+ getFaceValue() : int

� Draw the class as a rectangle
containing three parts:

� Class name
� Attribute : type
� Method(parameters) : return-type

� + means public, - means private

05/07/11 24

Member Functions

05/07/11 25

Where to define member functions
� Member functions can be defined in two places:

class Circle {
private:

double radius;
public:

void setRadius(double r) {
radius = r;

}
double getArea() {

return 3.15 * pow(radius, 2);
}

};

:: is the

class Circle {
private:

double radius;
public:

void setRadius(double r);
double getArea();

};

void Circle::setRadius(double r) {
radius = r;

}
double Circle::getArea() {

return 3.15 * pow(radius, 2);
}

Inside the class' {...} After the class' {...}
Non-inline (normal).

05/07/11 26

Method comments
� Must comment each class describing what it does.
� Must comment each public member function:

�

�

(if any)
�

(if not void)

/***********************************
* Set the circle's radius to r.
* r: new radius; should be >=0.
***********************************/
void Circle::setRadius(double r) {

radius = r;
}
/***********************************
* Calculate the circle's area.
* return: the area.
***********************************/
double Circle::getArea() {

return 3.15 * pow(radius, 2);
}

05/07/11 27

Review

� Write a getRadius() member function for the Circle
class. Make it non-inline, and add a comment block.

05/07/11 28

Summary

� Object Oriented Programming:
� Classes are the blue prints.
� Objects are the instances.

� Classes have access specifiers: public and private.
� Encapsulation prevents access to private

attributes/methods from outside the class.
� Functions normally defined outside the class.

� Ex: int Circle::getRadius() { return radius;}
� Inline functions defined inside the class.
� Comment all member functions.

