
CMPT 120: Introduction to Computing Science
and Programming 1

Final Review

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

• Control Structure: It is a logical design which refers to the order in
which statements in computer programs will be executed.

1. Sequence Structure: An order where a set of statements is
executed sequentially.

2. Decision Structure: An order where a set of instructions is
executed only if a condition exists.

a. Branching

b. Looping

8/2/2018

2

Liaqat Ali, Summer 2018.

2

Control Structures

Sequential Structure

8/2/2018

3

Liaqat Ali, Summer 2018.

3

Control Structures: Flowcharts

Decision Structure:
Branching

Decision Structure:
Looping

• Branching: It alters the flow of program execution by making a
selection or choice.

1. if
2. if-else
3. If-elif-else (A decision structure nested inside another decision structure)

• Looping: It alters the flow of program execution by repetition of a
particular block of statement(s).

1. for-loop
2. while-loop

8/2/2018

4

Liaqat Ali, Summer 2018.

4

Decision Structures

• A simple if statement provides a single
alternative decision structure.

▫ It provides only one alternative path of
execution.

▫ If condition is not true, exit the structure.

8/2/2018

5

Liaqat Ali, Summer 2018.

5

The if Statement: A Simple Decision Structure

If n < 0

Print
Error

true

false

:

• Python syntax:
if condition:

Statement

Statement

• First line known as the if clause.
• It includes the keyword if followed by condition.
• The condition can be true or false.
• When the if statement executes, the condition is tested, and if it is true the

block statements are executed.
• Otherwise, block statements are skipped.

8/2/2018

6

Liaqat Ali, Summer 2018.

6

The if Statement: Syntax

• The if-else decision structure provides:

▫ dual alternatives, or

▫ two possible paths of execution.

1. One path is taken if the condition is true,

2. And, the other path is taken if the
condition is false.

8/2/2018

7

Liaqat Ali, Summer 2018.

7

The if-else Statement: Dual Alternative Decision Structure

• The if-elif-else decision structure allows more than one condition to be
tested.

• Python syntax:
if condition 1:

Statement(s)

elif condition 2:

Statement(s)

elif condition 3:

Statement(s)

else:

Statement(s)

8/2/2018

8

Liaqat Ali, Summer 2018.

8

The if-else Statement: Syntax

Insert as
many elif

clauses

as

necessary.

• Repetition structure: A repetition structures makes computer repeat the
code (included inside the structure) as many times as required.
1. count-controlled loops (for loop i.e., repeat 5 times, 10 times, 100 times etc.)
2. condition-controlled loops (while loop, repeat as long as some condition is true.)

8/2/2018

9

Liaqat Ali, Summer 2018.

9

Introduction to Loops: Repetition Structures

• Count-Controlled loop: A definite loop iterates a specific number of times.

• We use a for statement to write count-controlled loop.
• Python for loop is designed to work with sequence of data items

 The for loop repeats or iterates once for each item in the sequence.

• General format:

for variable in range/list [val1, val2, etc]:

statements

▫ We refer to the first line as the for clause.

▫ Inside brackets a sequence of values, separated by comma, appear.

8/2/2018

10

Liaqat Ali, Summer 2018.

10

Count-Controlled Loop (Definite Loop): for Loop

• Condition-Controlled loop: An indefinite loop
that iterates an unspecified number of times.
▫ General format: while condition:

statements

• The loop executes while the condition is true.
• Based on the result of the condition, statements

inside the loop may get executed:
• zero time, or
• one time, or
• any number of times.

• We refer to the first line as the while clause.

8/2/2018

11

Liaqat Ali, Summer 2018.

11

The while Loop: Condition-Controlled Loop

Nested Loops
• Nested loop: loop that is contained inside another loop

• Key points about nested loops:
▫ Inner loop goes through all of its iterations for each iteration of outer loop

▫ Inner loops complete their iterations faster than outer loops

Binary Data Representation
• Data inside computer is not represented the same way as we represent

numbers and letters in English or native language. For example:
• We represent quantities using symbols (digits) 0, 1, 3,... and 9.
• We can write names using English letters A, B, C,…Z or a, b, c,…z

• So, we represent a quantity six by using the symbol 6.
• Using English alphabets, we can represent a street name as: Dawson Street.

• Problem!!!
• Computer don’t use (recognize) the symbols 0,1,2..9 or alphabets a, b, c,…z
• Because, computers use a completely different language to represent numbers

or letters (or data).
• We call it machine language. (Or, binary language or representation.)

Liaqat Ali, Summer 2018.

13

8/2/2018

Binary Data Representation - 2

• The binary language consists of two symbols only: 0 and 1

• That means, every thing in computer MUST be represented using the
symbols 0 and 1, only

• So, the quantity six must be represented using a commination of 0s and
1s. (Binary code)

• The name Dawson Street must also be represented using a commination
of 0s and 1s.

• Let’s create our own binary codes to represent letters A, B, C, …Z using a
combination of 0s and 1s.

Liaqat Ali, Summer 2018.

14

8/2/2018

Examples

0 0 1 0 0 0 1 1

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 0 32 0 0 0 2 1

1 0 1 0 1 0 1 1

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

128 0 32 0 8 0 2 1

= 35

= 171

Liaqat Ali, Summer 2018.

15

8/2/2018

Storage Units
• Bit: storage to represent a binary 0 or 1.
• Byte: a group of 8-bits.
• More bigger storage units (with

approximation, as shown in Study Guide):

• Example, “12 megabytes” is: 12 × 220 bytes
• = 12,582,912 bytes =>
12582912 × 8 bits = 100,663,296 bits .

• More specifically:

8/2/2018

Liaqat Ali, Summer 2018.

16

Signed Integer Data Representation: Binary
• A signed integer: For a positive integer represented by N binary digits the

possible values are -2N-1-1 <= value <= 2N-1-1.

+/- 127

+12

-12

N -1 Binary Digits

1 1 1 1 1 1 1

+/- 26 25 24 23 22 21 20

64 32 16 8 4 2 1

Sign
bit

Liaqat Ali, Summer 2018.

8/2/2018

17

0 0 0 0 1 1 0 0

1 0 0 0 1 1 0 0

Signed Integer Data Representation: One’s Complement

• Integer is represented by a string of binary digits.

▫ But, is represented in 1’s compliment form.

• How a number is converted to its 1’s Compliment form:
1. If a number is positive, simply convert the number to its binary equivalent.

 For example, if the number is: 6 0 0 0 0 0 1 1 0

2. If a number is negative, convert the number to its binary equivalent and flip
the bits.
 For example , if the number is: -6 0 0 0 0 0 1 1 0

 Flip the bits: 1 1 1 1 1 0 0 1

8/2/2018

18

N -1 Binary Digits: 1’s Compliment
Sign
bit

Liaqat Ali, Summer 2018.

Adapted from: Janice Regan, 2013.

Signed Integer Data Representation: One’s Complement

▫ Suppose an 8-bit 1’s pattern is shown as: 1 0 1 1 0 0 0 1

• What number this pattern represents?

▫ If first bit 0, then it is an unsigned/positive number, as shown
(simply convert it to its decimal equivalent).

▫ If first bit is 1, then:
1. Flip all the bits. So, 1011 0001 becomes 0100 1110

2. Convert to decimal: 01001110 = 26 + 23 + 22 + 21 = 64 + 8 + 4 + 2 =78

3. Add a minus sign. So 10110001 represents -78 in one’s
Complement form.

+

8/2/2018

19

Two’s Complement Signed Integer Representation

• Integer is represented by a string of
binary digits.
▫ Representation is in 2’s compliment form.
▫ Right most bit is used for sing.
▫ Remaining bits represent the value.

• Decimal to 2’s Compliment form:
• For a Positive Number:

1. First bit is 0.
2. Convert the number to its binary

equivalent.
• + 7 is represented as: 0000 0111
• + 13 is represented as: 0000 1101

• For a Negative Number:
1. Convert the number to its binary equivalent.

2. Flip the bits

3. Add 1.

• - 7 would be represented as:

1. Convert to binary: 0000 0111

2. Flip the bits: 1111 1000

3. Add 1. 1 = 1111 1001

• - 13 would be represented as:

1. Convert to binary: 0000 1101

2. Flip the bits: 1111 0010

3. Add 1. 1 = 1111 0011

8/2/2018

N-1 Binary Digits: 2’s Compliment
Sign
bit

20

Liaqat Ali, 2018

http://www.convertforfree.com/twos-complement-calculator/

Turtle Intro

Turtle is a Python feature that
allows you to draw and
animate graphic shapes.

Import turtle package

import turtle

Create our turtle

myTurtle = turtle.Turtle()

Move forward 50 pixels

myTurtle.forward(50)

Turn right 90 degrees

myTurtle.right(90)

Move forward 50 pixels

myTurtle.forward(50)

8/2/2018

21

Liaqat Ali, 2018

Create a Turtle

“object”

Using turtle in Python

• To make use of the turtle methods and functionalities, we need to import
turtle.

• ”turtle” comes packed with the standard Python package and need not be
installed externally.

• Four steps for executing a turtle program :
1. Import the turtle module

2. Create a turtle to control (using Turtle())

3. Draw around using the turtle methods.

4. Run turtle.done().

8/2/2018

22

Liaqat Ali, 2018

Common Turtle Methods (See Documentation)
METHOD PARAMETER DESCRIPTION

Turtle() None Creates and returns a new tutrle object

forward() amount Moves the turtle forward by the specified amount

backward() amount Moves the turtle backward by the specified amount

right() angle Turns the turtle clockwise

left() angle Turns the turtle counter clockwise

penup() None Picks up the turtle’s Pen

up() None Picks up the turtle’s Pen

down() None Puts down the turtle’s Pen

color() Color name Changes the color of the turtle’s pen

fillcolor() Color name Changes the color of the turtle will use to fill a polygon

8/2/2018

23

Adapted from: Janice Regan, 2013.

graphicshttps://docs.python.org/3.5/library/turtle.html

Introduction to Functions

•Function: group of statements within a program that
perform as specific task.
▫ Usually one task of a large program.

•Functions can be executed in order to perform overall
program task.

▫ Known as divide and conquer approach

•Modularized program: program wherein each task within
the program is in its own function.

24

8/2/2018

Liaqat Ali, 2018: Adapted from:

25

8/2/2018

• We use functions to
Divide and Conquer a
large task by dividing
into subtasks.

• We also call it a
modular approach.

Functions: A Divide and Conquer Approach

Liaqat Ali, 2018: Adapted from:

Void Functions and Value-Returning Functions

• A void function:

▫ Simply executes the statements it contains and then terminates.

• A value-returning function:

▫ Executes the statements it contains, and then it returns a value back to the
statement that called it.

• The input, int, and float functions are examples of value-returning
functions.

26

8/2/2018

Liaqat Ali, 2018: Adapted from:

Defining and Calling a Function

• Functions are given names (like we give names to variables).

▫ Function naming rules:

 Cannot use key words as a function name.

 Cannot contain spaces.

 First character must be a letter or underscore.

 All other characters must be a letter, number or underscore.

 Uppercase and lowercase characters are distinct.

27

8/2/2018

Liaqat Ali, 2018: Adapted from:

External storage

• When we shut down an application (e.g.: Python IDLE, Word or
Excel) and/or turn off our computer, often we do not want our
information (code, data) to disappear.

▫ We want our information to persist until the next time we use it.

▫ We achieve persistence by saving our information to files on external
storage like hard disk, flash memory, etc…

▫ We can use text files to store the input/output data.

28

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

8/2/2018

Files

• Text Files:
▫ The sequence of 0’s and 1’s represents human-readable characters, i.e.,

UNICODE/ASCII characters

▫ To view the content of a text file, one needs to use the appropriate
application such as a text editor (notepad).

▫ Example:

▫ In CMPT 120, we shall open or read text files to get data in to the
program, or to write from a program.

29

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

8/2/2018

Introduction to Recursion
Hardcode data inside
program.

quiz1 = 45

quiz2 = 56

total = quiz1 + quiz2

print(total_mark)

Get data from a text file.
Opening a file for reading

fileR = open('mark_data.txt', 'r')
Read its first line -> a string

quiz1 = fileR.readline()
Read its second line -> a string

quiz2 = fileR.readline()
quiz1 = int(quiz1)
quiz2 = int(quiz2)
total = quiz1 + quiz2
print(total)
Close the file

fileR.close()

8/2/2018

30

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

Get data using input()
function.

quiz1 = int(input())

quiz2 = int(input())

total = quiz1 + quiz2

print(total_mark)

Open a file in a Python program
• To use a file in our Python program, we must first open it in the appropriate mode:

<fileObject> = open(filename, <mode>)

Optional string
describing the way
in which the file
will be used.

Syntax:

31

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

8/2/2018

A word about <mode>

• A mode describes the way in which a file is to be used

• Python considers the following modes:

1. Read

2. Write

3. Append

4. Read and write

32

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

8/2/2018

Open a File for Reading
• To read from a file, we need to first open it in read mode with 'r':

fileRead = open(<filename>, 'r’)

OR fileRead = open(<filename>)

• fileRead is (called) a file object.

• If the file does not exists in the current directory, then:
▫ Python interpreter produces and prints an error.

FileNotFoundError: [Errno 2] No such file or

directory: 'fileDoesNotExist.txt'

Syntax:

33

8/2/2018

Dictionaries
• We have used variables and lists to store data previously.

For example, quiz_1 = 14 or
marks_list = [12, 15, 40, 30]

• Dictionary: is another object in Python that stores a collection of data.
• We use { } to define data in a dictionary.
• Each element in a dictionary consists of a key and a value.

Format: <dictionary_name> = {key1:val1, key2:val2, …}
• Often referred to as mapping of key to value
• To retrieve a specific value, use the key associated with it.

34

Liaqat Ali, 2018: Adapted from:

8/2/2018

Retrieving a Value from a Dictionary

• To retrieve a specific value, use the key associated with it.

• General format to retrieve a from a dictionary: dictionary_name[key]

• If key is in the dictionary, associated value is returned, otherwise,
KeyError exception is raised.

• To test whether a key is in a dictionary use the in and not in operators.

▫ These operators can helps prevent KeyError exceptions.

• Elements in dictionary are unsorted

35

Liaqat Ali, 2018: Adapted from:

8/2/2018

Adding Elements to an Existing Dictionary

• Dictionaries are mutable objects

• To add a new key-value pair: dictionary_name[key] = value

▫ If key exists in the dictionary, the value associated with it will be changed.
Else, added.

country_population = {‘Canada’ : 36624199, ‘USA’ : 324459463}

country_population[‘Mexico’] = 129163276

print(country_population)

{‘Canada’ : 36624199, ‘USA’ : 324459463, ‘Mexico’ : 129163276}

8/2/2018

36

Liaqat Ali, 2018: Adapted from:

Some Dictionary Methods

• clear() method: Deletes all the elements in a dictionary, leaving it empty.

• Format: dictionary_name.clear()

• get() method: Gets you a value associated with specified the specified key.

• Format: dictionary_name.get(key, default)

• default is returned if the key is not found.

print(country_population.get(‘China’, ‘No Value Found’))

• Alternative to [] operator.

• Cannot raise KeyError exception.

8/2/2018

37

Liaqat Ali, 2018: Adapted from:

Sequences
• Sequence: an object that contains multiple items of data. For instance:

• my_list = [6, 78, 9] is an example of a sequence.

• The distinctive name of the this sequence is list.

• So list is a type of sequence.

• The items are stored in sequence one after another.

• Python provides different types of sequences, including lists and tuples.

• The difference between these is that:

• a list is mutable

• a tuple is immutable

Liaqat Ali, Summer 2018. Adapted:

38

8/2/2018

Lists

• List: an object that contains multiple data items separated by a comma.
• An data item in a list is called an Element.

• Format: list = [item1, item2, etc.]

• A list can hold items of different types.

• my_list = [7, “Ted”, [56, 78]]
• Contains three elements of type int, str and list.

•print function can be used to display an entire list.

•list() function can convert certain types of objects to lists.

• For instance, to convert a tuple into a lit.

Liaqat Ali, Summer 2018. Adapted:

39

8/2/2018

The Repetition Operator and Iterating over a List

• Repetition operator: makes multiple copies of a list and joins them
together

▫ The * symbol is a repetition operator when applied to a sequence and an integer.

• Sequence is left operand, number is right

▫ General format: list * n

• [7, “Ted”, [56, 78]] * 2 = [7, “Ted”, [56, 78], 7, “Ted”, [56, 78]]

• You can iterate over a list using a for loop

▫ Format: for x in list:

Liaqat Ali, Summer 2018. Adapted:

40

8/2/2018

Indexing

• Index: a number specifying the position of an element in a list

▫ Enables access to individual element in list

▫ Index of first element in the list is 0, second element is 1, and n’th
element is n-1

▫ Negative indexes identify positions relative to the end of the list

• The index -1 identifies the last element, -2 identifies the next to last
element, etc.

Liaqat Ali, Summer 2018. Adapted:

41

8/2/2018

The len function

• An IndexError exception is raised if an invalid index is used.

•len function: returns the length of a sequence such as a list

▫ Example: size = len(my_list)

▫ Returns the number of elements in the list, so the index of last element is
len(list)-1

▫ Can be used to prevent an IndexError exception when iterating over a list with a
loop.

 for i in range(len(my_list)):

Liaqat Ali, Summer 2018. Adapted:

42

8/2/2018

Lists Are Mutable

• Mutable sequence: the items in the sequence can be changed
▫ Lists are mutable, and so their elements can be changed

• An expression such as

• list[1] = new_value can be used to assign a new value to a list
element.

▫ Must use a valid index to prevent raising of an IndexError exception

Liaqat Ali, Summer 2018. Adapted:

43

8/2/2018

Introduction to Searching

• Have your ever used Ctrl-F keys?
▫ We use it to search a value.
▫ How to search a value – how to search it fast?

• Searching: Locating an item in a list of data.

• Two of search algorithms are:
1. Linear or Sequential Search.
2. Binary Search.

 Half-interval search.
 Logarithmic search.

Liaqat Ali, Summer 2018 44

Linear Search
• Starting at the first element, this algorithm steps through an

array sequentially, examining each element until it locates the
desired value.

▫ Suppose, an array list contains following values:

list[0] list[6]

▫ To search a value 11, Linear Search compares 17, 23, 5, and 11.
▫ Say, we define two variable:
▫ VALUE = 11
▫ found = False
▫ How you will perform this Linear Search?

45Liaqat Ali, Summer 2018

46

Big O
• Estimate the order of the number of calculations needed
▫ Order is the largest power of n in the estimated upper limit of the

number of operations.

• For most n (amount of data) it is generally true that an order nk

algorithm is significantly faster than an order nk+1 algorithm

• An algorithm with order n operations is said to run in linear time

• An algorithm with order n2 operations is said to run in quadratic
time.

8/2/2018

46

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

47

Estimate of how fast

• Looking for a ‘good’ upper limit
• Just consider the Order.
▫ The order is the largest power of n

• First example: 9 operations
▫ O(9) = 0 Order 0 (not a function of n)

• Second example: 6*n +1 operations
▫ O(6*n +1) = n Order 1 (largest power of n is 1)

• Third example: 1+3n+11n2

▫ O(1+3n+11n2) = n2 Order 2 (largest power of n is 2)

8/2/2018

47

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

Introduction to Sorting
• Sorting: Arranging values into an order:

▫ Alphabetical

▫ Ascending numeric

▫ Descending numeric

• One of the simplest algorithms is Selection sort.

48

48

8/2/2018

Liaqat Ali, Summer 2018.

49

Selection Sort Example (Ascending Order)

49

8/2/2018

Liaqat Ali, Summer 2018.

Iteration 1:
1. Find the smallest

element between lis[0]
and lis[4].

2. Swap if smaller.

Iteration 2:
1. Find the smallest

element between lis[1]
and lis[4].

2. Swap if smaller.

Iteration 3:
1. Find the smallest

element between
lis[2] and lis[4].

2. Swap if smaller.

Iteration 4:
1. Find the smallest

element between
lis[3] and lis[4].

2. Swap if smaller.

8/2/2018

50

Questions?

Copyright © 2018 by Liaqat Ali

