
CMPT 120: Introduction to Computing Science 
and Programming 1 

Object-oriented 
Programming

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. 
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf


Today’s Topics

1. Procedural and Object-Oriented Programming

2. Classes

3. Working with Instances

4. Techniques for Designing Classes

2

7/31/2018



Procedural Programming

• There are primarily two methods of programming in use today: 

1. Procedural

2. Object-oriented

• Procedural Programming: Writing programs made of functions that 
perform specific tasks.
▫ Data items commonly passed from one procedure to another.

▫ Procedures typically operate on data items that are separate from the 
procedures.

▫ Focus: to create procedures that operate on the program’s data.

3

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Object-Oriented Programming

• Object-oriented Programming: A method of 
programming focused on creating objects.

• Object: An entity that contains data and procedures.

▫ Data is known as data attributes and procedures are known 
as methods.

• Methods perform operations on the data attributes.

• Encapsulation: Combining data and code into a single 
object.

7/31/2018

4

Liaqat Ali, Summer 2018. Adapted from



Object-Oriented Programming (cont’d.)
• Data hiding: Object’s data attributes are 

hidden from code outside the object.

▫ Access restricted to the object’s methods

• Protects from accidental corruption

• Outside code does not need to know internal 
structure of the object

• Object reusability: the same object can be 
used in different programs 

▫ Example: 3D image object can be used for 
architecture and game programming.

7/31/2018

5

Liaqat Ali, Summer 2018. Adapted from



An Everyday Example of an Object

• Data attributes: define the state of an object

▫ Example: clock object would have second, minute, and hour data 
attributes.

• Public methods: allow external code to manipulate the object.

▫ Example: set_time, set_alarm_time

• Private methods: used for object’s inner workings.

6

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Classes

• Class: code that specifies the data attributes and methods of a 
particular type of object.

▫ Similar to a blueprint of a house or a cookie cutter.

• Instance: an object created from a class.

▫ Similar to a specific house built according to the blueprint or a specific 
cookie.

▫ There can be many instances of one class.

7

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Classes - 2

8

7/31/2018



Class Definitions

• Class definition: set of statements that define a class’s methods 
and data attributes

▫ Format: begin with class Class_name:

• Class names often start with uppercase letter.

▫ Method definition like any other python function definition.

•self parameter: required in every method in the class – references 
the specific object that the method is working on.

9

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Class Definitions - 2

• Initializer method: automatically executed when an instance of 
the class is created

▫ Initializes object’s data attributes and assigns self parameter to the 
object that was just created

▫ Format: def __init__ (self):

▫ Usually the first method in a class definition.

10

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Class Definitions - 3

11

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Class Definitions - 4

• To create a new instance of a class call the initializer method
▫ Format: My_instance = Class_Name()

• To call any of the class methods using the created instance, use 
dot notation
▫ Format: My_instance.method()

▫ Because the self parameter references the specific instance of the 
object, the method will affect this instance

• Reference to self is passed automatically.

12

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Hiding Attributes and Storing Classes in Modules

• An object’s data attributes should be private.
▫ To make sure of this, place two underscores (__) in front of attribute name

• Example: __current_minute

• Classes can be stored in modules
▫ Filename for module must end in .py

▫ Module can be imported to programs that use the class

13

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Working With Instances

• Instance attribute: Belongs to a specific instance of a class.

▫ Created when a method uses the self parameter to create an attribute

• If many instances of a class are created, each would have its own 
set of attributes.

14

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



15

7/31/2018

Liaqat Ali, Summer 2018. Adapted from

Working With Instances - 2



Accessor and Mutator Methods 

• Typically, all of a class’s data attributes are private and provide 
methods to access and change them.

• Accessor methods: Return a value from a class’s attribute 
without changing it.

▫ Safe way for code outside the class to retrieve the value of attributes

• Mutator methods: Store or change the value of a data attribute.

16

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Passing Objects as Arguments

• Methods and functions often need to accept objects as 
arguments

• When you pass an object as an argument, you are actually 
passing a reference to the object

▫ The receiving method or function has access to the actual object

• Methods of the object can be called within the receiving function or 
method, and data attributes may be changed using mutator methods

17

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Techniques for Designing Classes

• UML diagram: standard diagrams for 
graphically depicting object-oriented systems

▫ Stands for Unified Modeling Language

• General layout: box divided into three 
sections:

▫ Top section: name of the class.

▫ Middle section: list of data attributes.

▫ Bottom section: list of class methods.

18

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Finding the Classes in a Problem

• When developing object oriented program, first goal is to identify 
classes
▫ Typically involves identifying the real-world objects that are in the 

problem

▫ Technique for identifying classes:

1. Get written description of the problem domain

2. Identify all nouns in the description, each of which is a potential 
class

3. Refine the list to include only classes that are relevant to the 
problem

19

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Finding the Classes in a Problem - 2

1. Get written description of the problem domain.

▫ May be written by you or by an expert.

▫ Should include any or all of the following:

 Physical objects simulated by the program.

 The role played by a person 

 The result of a business event

 Recordkeeping items

20

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Finding the Classes in a Problem - 3

2. Identify all nouns in the description, each of which is a potential 
class
▫ Should include noun phrases and pronouns.

▫ Some nouns may appear twice.

21

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



Finding the Classes in a Problem - 4

3. Refine the list to include only classes that are relevant to the 
problem
▫ Remove nouns that mean the same thing

▫ Remove nouns that represent items that the program does not need to 
be concerned with

▫ Remove nouns that represent objects, not classes

▫ Remove nouns that represent simple values that can be assigned to a 
variable

22

7/31/2018



Identifying a Class’s Responsibilities

•A classes responsibilities are:
▫ The things the class is responsible for knowing

•Identifying these helps identify the class’s data attributes

▫ The actions the class is responsible for doing

•Identifying these helps identify the class’s methods

•To find out a class’s responsibilities look at the problem 
domain
▫ Deduce required information and actions.

23

7/31/2018

Liaqat Ali, Summer 2018. Adapted from



7/29/2018

24

Questions?

Copyright © 2018 by Liaqat Ali


