

CMPT 120: Introduction to Computing Science and Programming 1

Copyright © 2018, Liaqat Ali. Based on <u>CMPT 120 Study Guide</u> and <u>Think Python - How to Think Like a Computer Scientist</u>, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.

How Fast is my Algorithm?

- There can be many algorithms to solve any problem like linear search, binary search.
- 1. How do we choose the most efficient?
- 2. What is efficient?
- One measure is how fast our algorithm can determine the solution.
 - [•] This is not the only measure, nor is it always the best measure.
 - How do we measure 'how fast'.

Introduction to Sorting

- <u>Sorting</u>: Arranging values into an order:
 - Alphabetical
 - Ascending numeric
 - Descending numeric
- There are many problems that can be solved quite quickly by first sorting the values like Binary searching.
- There are many algorithms to taking a list of elements and putting those elements into ascending or descending order.
- One of the simplest algorithms is Selection sort.

Δ

Sorting a List: Ascending or Descending Order

Unsorted List of size 5:

20	12	10	15	2
lis[0]	lis[1]	L{2]	lis[3]	lis[4]

Sorted List: Descending order

20	15	12	10	2
lis[0]	lis[1]	L{2]	lis[3]	lis[4]

Sorted List: Ascending order

2	10	12	15	20
lis[0]	lis[1]	L{2]	lis[3]	lis[4]

Liaqat Ali, Summer 2018.

Selection Sort Example (Ascending Order)

Liaqat Ali, Summer 2018.

Selection Sort

SIMON FRASER UNIVERSITY

- A method to arrange the unsorted list into a sorted list.
- The algorithm sorts an list by repeatedly:
 - finding the minimum element from unsorted part and putting it at the beginning (for ascending order.)
 - finding the maximum element from unsorted part and putting it at the beginning (for descending order).
- Imagine the algorithm maintains two subarrays.
 - 1. The subarray which is already sorted.
 - 2. Remaining subarray which is unsorted.
- In every iteration, the minimum/maximum element from the unsorted subarray is picked and moved to the sorted subarray.
- Size of unsorted array gradually decreases as shown on next slide.

7/29/2018

7/29/2018

7

Selection Sort: Unsorted Array Size

Ghassan Hamarneh & Liaqat Ali, Fall 2017

Selection Sort - Procedure

- 1. Selection sort algorithm **starts by** comparing first two elements of an array and swapping, if necessary.
- 2. Then, again **first** element and **third** element are compared and swapped if necessary.
- 3. This process goes on until **first** and **last** element of an array is compared.
- 4. If there are **N** elements to be sorted then, the process mentioned above should be repeated **N-1** times to get required result.
- 5. Finding the next lowest element requires scanning the remaining n 1 elements and so on:

 $(n - 1) + (n - 2) + ... + 2 + 1 = n(n - 1) / 2 = = (n^2 - n) / 2 = \Theta(n^2)$ comparisons.

Selection Sort – Algorithm

for every element e from the list,
for every element f from e to the end of the list,
 if f < smallest ,
 set smallest to f
 swap smallest and e</pre>

Canvas Post: Due by Monday, July 30, 11:59pm

- Implement the selection sort algorithm. You may refer to the course
 Study Guide Figure 6.5 and Figure 6.6 for selection sort algorithm and its implementation.
- Use the following list to test your program:
 [1, 6, 0, 7, 10]
- Post your Python program and its result on Canvas.

7/29/2018

Copyright © 2018 by Liaqat Ali