CMPT 120: Introduction to Computing Science and Programming 1

Sorting

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

How Fast is my Algorithm?

- There can be many algorithms to solve any problem - like linear search, binary search.

1. How do we choose the most efficient?
2. What is efficient?

- One measure is how fast our algorithm can determine the solution.
- This is not the only measure, nor is it always the best measure.
- How do we measure 'how fast'.

Introduction to Sorting

- Sorting: Arranging values into an order:
- Alphabetical
- Ascending numeric
- Descending numeric
- There are many problems that can be solved quite quickly by first sorting the values - like Binary searching.
- There are many algorithms to taking a list of elements and putting those elements into ascending or descending order.
- One of the simplest algorithms is Selection sort.

Sorting a List: Ascending or Descending Order

Unsorted List of size 5:

20	12	10	15	2
lis[0]	lis[1]	L\{2]	lis[3]	lis[4]

Sorted List: Descending order

20	15	12	10	2
$\operatorname{lis}[0]$	lis[1]	$L\{2]$	$\operatorname{lis[3]}$	lis[4]

Sorted List: Ascending order

2	10	12	15	20
lis[0]	lis[1]	$L\{2]$	lis[3]	lis[4]

Selection Sort Example (Ascending order)

Step 1
Iteration 1:

1. Find the smallest element between lis[0] and lis[4].
2. Swap if smaller.

Iteration 2:

1. Find the smallest element between lis[1] and lis[4].
2. Swap if smaller.

$$
\text { Step } 3
$$

Iteration 3:

1. Find the smallest element between lis[2] and lis[4].
2. Swap if smaller.

Iteration 4:

1. Find the smallest element between lis[3] and lis[4].
2. Swap if smaller.

Selection Sort

- A method to arrange the unsorted list into a sorted list.
- The algorithm sorts an list by repeatedly:
- finding the minimum element from unsorted part and putting it at the beginning (for ascending order.)
- finding the maximum element from unsorted part and putting it at the beginning (for descending order).
- Imagine the algorithm maintains two subarrays.

1. The subarray which is already sorted.
2. Remaining subarray which is unsorted.

- In every iteration, the minimum/maximum element from the unsorted subarray is picked and moved to the sorted subarray.
- Size of unsorted array gradually decreases as shown on next slide.

Selection Sort: Unsorted Array Size

Ghassan Hamarneh \& Liaqat Ali, Fall 2017

Selection Sort - Procedure

1. Selection sort algorithm starts by comparing first two elements of an array and swapping, if necessary.
2. Then, again first element and third element are compared and swapped if necessary.
3. This process goes on until first and last element of an array is compared.
4. If there are \mathbf{N} elements to be sorted then, the process mentioned above should be repeated \mathbf{N}-1 times to get required result.
5. Finding the next lowest element requires scanning the remaining $n-1$ elements and so on:

$$
(n-1)+(n-2)+\ldots+2+1=n(n-1) / 2==\left(n^{2}-n\right) / 2=\boldsymbol{O}\left(n^{2}\right) \text { comparisons. }
$$

Selection Sort - Algorithm

for every element \mathbf{e} from the list, for every element \mathbf{f} from \boldsymbol{e} to the end of the list, if f < smallest, set smallest to f
swap smallest and e

Canvas Post: Due by Monday, July 30, 11:59pm

- Implement the selection sort algorithm. You may refer to the course Study Guide Figure 6.5 and Figure 6.6 for selection sort algorithm and its implementation.
- Use the following list to test your program:
[1, 6, 0, 7, 10]
- Post your Python program and its result on Canvas.

Questions?

