
CMPT 120: Introduction to Computing Science
and Programming 1

Big O: Order of Algorithm

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

2

How Fast is my Algorithm?

• There can be many algorithms to solve any problem – like linear
search, binary search.

1. How do we choose the most efficient?

2. What is efficient?

• One measure is how fast our algorithm can determine the
solution.

▫ This is not the only measure, nor is it always the best measure.

▫ How do we measure ‘how fast’.

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

7/26/2018

2

3

‘How Fast’

• What contributes to how fast a program runs?

▫ The speed the CPU can process operations.

▫ The efficiency of your code (the number of operations needed to complete your

calculations).

 This depends on the algorithm used.

 This may depend on the size of the data set being analyzed.

 This depends on the particular implementation of the algorithm. (processor speed;

instruction set, disk speed, brand of compiler and etc.)

▫ How many other things your computer is doing at the same time.

7/26/2018

3

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

4

Measuring ‘How Fast’
• Two approaches:
1.Analyze your algorithm/code
▫ Determine an upper limit on the number of operations needed
▫ Know your CPU speed (cycles per second)

2.Implement your algorithm then make measurements of how long it takes
to run for data sets of varying sizes
▫ Create a common baseline, run tests on same machine with same background load
▫ Disadvantage: you already have spent the time coding and testing if the algorithm is

not practical this may have been wasted.

7/26/2018

4

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

5

Counting operations

• Consider the operations used in your code.

▫ +, -, *, /, %, <, <=, >, >=, ==, =, !=, &, !, &&, || …

▫ Make a simplifying assumption that each of these operations take the same length
of time to execute.

▫ Now we just need to count the operations in your program to get an estimate of
‘how fast’ it will run.

▫ This estimate is independent of the machine on which the code runs.

 Machine-dependent: Once we know the time taken by an ‘operation’ on our machine we know
how long our code will take.

7/26/2018

5

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

6

Example: counting operations(1)

• Simple linear or branching code:

if(neighborcount > 3 or neighborcount < 2):

nextGenBoard[indexrow] = '.’

• The first if executes 3 operations, >, or, and <

• If the first if is true then the block of code above executes with 2
operation: [] and =

7/26/2018

6

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

7

Example: Counting Operations

• While loop

count = 0
while (count < n):

localSum = dataArray[count] + 2 * localSum
count++;

• Total operations each time through loop is 6
• The initialization of count takes one operation before the loop begins

executing
• The loop is executed n times
• The number of operations is 6*n + 1

7/26/2018

7

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

8

Missed operation!!!

• While loop

count = 0;

while (count < n):
localSum = dataArray[count] + 2 * localSum;
count++;

• The number of operations is 6*n + 1

• The test in the while is executed one additional time at the end of the loop.
• The number of operations is 6*n + 2

7/26/2018

8

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

9

Big O
• Estimate the order of the number of calculations needed
▫ Order is the largest power of n in the estimated upper limit of the

number of operations.

• For most n (amount of data) it is generally true that an order nk

algorithm is significantly faster than an order nk+1 algorithm

• An algorithm with order n operations is said to run in linear time

• An algorithm with order n2 operations is said to run in quadratic
time.

7/26/2018

9

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

10

Estimate of how fast

• Looking for a ‘good’ upper limit
• Just consider the Order.
▫ The order is the largest power of n

• First example: 9 operations
▫ O(9) = 0 Order 0 (not a function of n)

• Second example: 6*n +1 operations
▫ O(6*n +1) = n Order 1 (largest power of n is 1)

• Third example: 1+3n+11n2

▫ O(1+3n+11n2) = n2 Order 2 (largest power of n is 2)

7/26/2018

10

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

11

Measuring ‘how fast’
• How good are our estimates

• The estimates we have made are worst case estimates.

▫ In some cases algorithms will finish much faster if input data has particular
properties

▫ Be careful the measurement is only as good as the assumptions.

• We can directly measure ‘how fast’ for particular types of data sets of
particular sizes

▫ You are doing this is your lab

▫ This is still a way to approximate performance in a general case on a wider variety of
sizes.

7/26/2018

11

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

7/24/2018

12

Questions?

Copyright © 2018 by Liaqat Ali

