
CMPT 120: Introduction to Computing Science
and Programming 1

Big O: Order of Algorithm

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

2

How Fast is my Algorithm?

• There can be many algorithms to solve any problem – like linear
search, binary search.

1. How do we choose the most efficient?

2. What is efficient?

• One measure is how fast our algorithm can determine the
solution.

▫ This is not the only measure, nor is it always the best measure.

▫ How do we measure ‘how fast’.

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

7/26/2018

2

3

‘How Fast’

• What contributes to how fast a program runs?

▫ The speed the CPU can process operations.

▫ The efficiency of your code (the number of operations needed to complete your

calculations).

 This depends on the algorithm used.

 This may depend on the size of the data set being analyzed.

 This depends on the particular implementation of the algorithm. (processor speed;

instruction set, disk speed, brand of compiler and etc.)

▫ How many other things your computer is doing at the same time.

7/26/2018

3

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

4

Measuring ‘How Fast’
• Two approaches:
1.Analyze your algorithm/code
▫ Determine an upper limit on the number of operations needed
▫ Know your CPU speed (cycles per second)

2.Implement your algorithm then make measurements of how long it takes
to run for data sets of varying sizes
▫ Create a common baseline, run tests on same machine with same background load
▫ Disadvantage: you already have spent the time coding and testing if the algorithm is

not practical this may have been wasted.

7/26/2018

4

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

5

Counting operations

• Consider the operations used in your code.

▫ +, -, *, /, %, <, <=, >, >=, ==, =, !=, &, !, &&, || …

▫ Make a simplifying assumption that each of these operations take the same length
of time to execute.

▫ Now we just need to count the operations in your program to get an estimate of
‘how fast’ it will run.

▫ This estimate is independent of the machine on which the code runs.

 Machine-dependent: Once we know the time taken by an ‘operation’ on our machine we know
how long our code will take.

7/26/2018

5

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

6

Example: counting operations(1)

• Simple linear or branching code:

if(neighborcount > 3 or neighborcount < 2):

nextGenBoard[indexrow] = '.’

• The first if executes 3 operations, >, or, and <

• If the first if is true then the block of code above executes with 2
operation: [] and =

7/26/2018

6

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

7

Example: Counting Operations

• While loop

count = 0
while (count < n):

localSum = dataArray[count] + 2 * localSum
count++;

• Total operations each time through loop is 6
• The initialization of count takes one operation before the loop begins

executing
• The loop is executed n times
• The number of operations is 6*n + 1

7/26/2018

7

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

8

Missed operation!!!

• While loop

count = 0;

while (count < n):
localSum = dataArray[count] + 2 * localSum;
count++;

• The number of operations is 6*n + 1

• The test in the while is executed one additional time at the end of the loop.
• The number of operations is 6*n + 2

7/26/2018

8

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

9

Big O
• Estimate the order of the number of calculations needed
▫ Order is the largest power of n in the estimated upper limit of the

number of operations.

• For most n (amount of data) it is generally true that an order nk

algorithm is significantly faster than an order nk+1 algorithm

• An algorithm with order n operations is said to run in linear time

• An algorithm with order n2 operations is said to run in quadratic
time.

7/26/2018

9

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

10

Estimate of how fast

• Looking for a ‘good’ upper limit
• Just consider the Order.
▫ The order is the largest power of n

• First example: 9 operations
▫ O(9) = 0 Order 0 (not a function of n)

• Second example: 6*n +1 operations
▫ O(6*n +1) = n Order 1 (largest power of n is 1)

• Third example: 1+3n+11n2

▫ O(1+3n+11n2) = n2 Order 2 (largest power of n is 2)

7/26/2018

10

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

11

Measuring ‘how fast’
• How good are our estimates

• The estimates we have made are worst case estimates.

▫ In some cases algorithms will finish much faster if input data has particular
properties

▫ Be careful the measurement is only as good as the assumptions.

• We can directly measure ‘how fast’ for particular types of data sets of
particular sizes

▫ You are doing this is your lab

▫ This is still a way to approximate performance in a general case on a wider variety of
sizes.

7/26/2018

11

Liaqat Ali, Summer 2018. Adapted from © Janice Regan, 2012

7/24/2018

12

Questions?

Copyright © 2018 by Liaqat Ali

