
CMPT 120: Introduction to Computing Science
and Programming 1

Searching

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Today’s Topics

1. Searching

2. Linear Search

3. Binary Search

Liaqat Ali, Summer 2018. Adapted:

2

7/22/2018

Introduction to Searching

• Have your ever used Ctrl-F keys?
▫ We use it to search a value.
▫ How to search a value – how to search it fast?

• Searching: Locating an item in a list of data.

• Two of search algorithms are:
1. Linear or Sequential Search.
2. Binary Search.

 Half-interval search.
 Logarithmic search.

Liaqat Ali, Summer 2018 3

Linear Search
• Starting at the first element, this algorithm steps through an

array sequentially, examining each element until it locates the
desired value.

▫ Suppose, an array list contains following values:

list[0] list[6]

▫ To search a value 11, Linear Search compares 17, 23, 5, and 11.
▫ Say, we define two variable:
▫ VALUE = 11
▫ found = False
▫ How you will perform this Linear Search?

4Liaqat Ali, Summer 2018

Linear Search

• Algorithm:

list = [45, 12, 34, 2, 5, 40]

Set search value = 2

for i in range(len(list)):

if list[i] is equal to search value

return i

return -1

5Liaqat Ali, Summer 2018

Linear search algorithm

linearSearch(list, target)

set result to value TARGET_NOT_FOUND
set targetNotFound to value true

if list not empty
set currentElement to first element of list

while targetNotFound AND
have not looked at every element of list

if currentElement == target

set result to current element

set targetNotFound to false

otherwise

set currentElement to next element of list

return result

6

Linear Search

• Algorithm:

Worst-case performance O(n)

Best-case performance O(1)

Average performance O(n)

7Liaqat Ali, Summer 2018

Linear Search - Tradeoffs

• Benefits:

▫ Easy algorithm to understand

▫ List can be in any order

• Disadvantages:

▫ Inefficient (slow): for a list of N elements it examines:

 N/2 elements on average for value in array,

 N elements for value not in array.

8Liaqat Ali, Summer 2018

Binary Search
• Binary Search is a another search algorithm.

• It requires array elements to be ordered (sorted).

1. Divides the array into three sections:

i. middle element

ii. elements on one side of the middle element

iii. elements on the other side of the middle element

2. If the middle element is the correct value, done. Otherwise, go to step 1.
Using only the half of the array that may contain the correct value.

3. Continue steps 1. and 2. until either the value is found or there are no more
elements to examine.

9

Binary search algorithm

• Question 1: does your word start with a letter <= M?

• Possible answer:

▫ Yes, so we can ignore ½ of the alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

▫ No, so we can ignore the other ½

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

10

Anne_Lavergn2, Summer 1017.

Next question:

• Question 2: does your word start
with a letter <= G?

• Possible answer:

▫ Yes, so we can ignore ½ of the
alphabet

A B C D E F G H I J K L M

▫ No, so we can ignore the other ½

A B C D E F G H I J K L M

OR

• Question 2: does your word start
with a letter <= T?

• Possible answer:

▫ Yes, so we can ignore ½ of the
alphabet

N O P Q R S T U V W X Y Z

▫ No, so we can ignore the other ½

N O P Q R S T U V W X Y Z

11

Binary search algorithm

Anne_Lavergn2, Summer 1017.

One possible algorithm -> binary search algorithm

Next question:

• Question 3: does your word start
with a letter <= D?

• Possible answer:
▫ Yes, so we can ignore ½ of the

alphabet

A B C D E F G

▫ No, so we can ignore ½ of the
alphabet

A B C D E F G

OR

Question 3: does your word start with
a letter <= J?

H I J K L M

Question 3: does your word start with
a letter <= Q?

N O P Q R S T

Question 3: does your word start with
a letter <= W?

U V W X Y Z

etc...

12

Anne_Lavergn2, Summer 1017.

Another example
• Suppose we have a sorted list:

• Using Binary Search algorithm, we can search for target = 7 without having to look at
every element.

1 3 4 7 9 11 12 14 21

13

Anne_Lavergn2, Summer 1017.

Animation: How it works – 1

1. We start with a list and a target = 7 1 3 4 7 9 11 12 14 21

1 3 4 7 9 11 12 14 21

1 3 4 7 9 11 12 14 21

2. We find the middle element

3. Is this element == target?
• Yes, then we are done!

• No, then we throw away half of the list in which we know target cannot be located (grey part)

We repeat steps 2 and 3 until we found target or run out of list.

and we consider only the part in which target could be located.

14

Anne_Lavergn2, Summer 1017.

Animation: How it works – 2

1 3 4 7 9 11 12 14 21

1 3 4 7 9 11 12 14 21

2. We find the middle element

3. Is this element == target?

• Yes, then we are done!

• No, then we throw away half of the list in which we know target
cannot be located (grey part)

We repeat steps 2 and 3 until we found target or run out of list.

and we consider only the part in which target could be located

15

Anne_Lavergn2, Summer 1017.

Animation: How it works - 3

1 3 4 7 9 11 12 14 21

2. We find the middle element

3. Is this element == target?

• Yes, then we are done!

• No, then we throw away half of the list in which we know target
cannot be located (grey part)

We repeat steps 2 and 3 until we found target or run out of list.

1 3 4 7 9 11 12 14 21

and we consider only the part in which target could be located

16

Anne_Lavergn2, Summer 1017.

Animation: How it works - 4
2. We find the middle element

3. Is this element == target?

• Yes, then we are done! ☺

1 3 4 7 9 11 12 14 21

17

Anne_Lavergn2, Summer 1017.

Binary Search - Tradeoffs
• Benefits:
▫ Much more efficient than linear search. For array of N

elements, performs at most log2N comparisons.

▫ Faster because does not have to look at every element (at
every iteration, ignores ½ of list).

• Disadvantages:
▫ Requires that array

elements be sorted

18Anne_Lavergn2, Summer 1017.

Time efficiency of binary search algorithm

Result of binary search algorithm efficiency analysis:

▫ The worst case scenario of the binary search algorithm is of order log2 n

i.e., has a time efficiency of O(log2 n).

since the time required (i.e., number of times the critical operation is
executed) by the binary search algorithm (under the worst case
scenario) to find “target” in a list of length n is proportional to the log of
the number of elements in the list, i.e., n.

19

Anne_Lavergn2, Summer 1017.

Binary search algorithm: Time Complexity

• Worst-case space complexity: O(1)

• Worst-case performance: O(log n)

• Best-case performance: O(1)

• Average performance: O(log n)

20

https://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
https://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
https://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
https://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions

Binary Search
Set first to 0

Set last to the last subscript in the array

Set found to false

Set position to -1

While found is not true and first is less than or equal to last

Set middle to the subscript half-way between array[first] and array[last].

If array[middle] equals the desired value

Set found to true

Set position to middle

Else If array[middle] is greater than the desired value

Set last to middle - 1

Else

Set first to middle + 1

End If.

End While.

Return position.

Ghassan Hamarneh & Liaqat Ali, Fall 2017
21

first=0 last=size-1middle

‘middle’>search

last=middle-1first=0

‘middle’<=search

first=
middle+1

last=size-1

Binary Search algorithm - iterative

PreCondition: data must be sorted

binarySearch(list, target)

set position to value TARGET_NOT_FOUND

set targetNotFound to value true

if list not empty

while targetNotFound AND have not looked or discarded every element of list

find middle element of list

if middle element == target

set position to position of target in original list

set targetNotFound to false

else

if target < middle element

list = first half of list

else

list = last half of list

return position

We ignore 2nd

half of the list

and middle element

We ignore 1st

half of the list

and middle element

22

Anne_Lavergn2, Summer 1017.

7/20/2018

23

Questions?

Copyright © 2018 by Liaqat Ali

