CMPT 120: Introduction to Computing Science and Programming 1

A Quick Review - Main Concepts

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

Input Validation Loops

- It is important to design program such that bad input is never accepted.
- GIGO: garbage in, garbage out
- Input validation: inspecting input before it is processed by the program
- If input is invalid, prompt user to enter correct data
- Commonly accomplished using a while loop which repeats as long as the input is bad.
- If input is bad, display error message and receive another set of data
- If input is good, continue to process the input.

Sentinels

- Sentinel: special value used to mark end of a sequence of items or loop.
- When program reaches a sentinel, it knows that the end of the sequence of items was reached, and the loop terminates.
- user_input = 1
sum = 0
while user_input !=-99:
user_input = int(input("Enter your number or -99 to end."))
sum = sum + user_input print("The sum of numbers is: \{\}".format(sum))

Nested Loops

- Loop that is contained inside another loop.
- Key points about nested loops:
- Inner loop goes through all of its iterations for each iteration of outer loop.
- Inner loops complete their iterations faster than outer loops.

Binary Data Representation

- Data inside computer is not represented the same way as we represent numbers and letters in English or native language. For example:

- Problem!!!

- Computer don't use (recognize) the symbols $0,1,2 . .9$ or alphabets a, b, c,... z
- Computer uses a binary language representation.
- The binary language consists of two symbols only: $\mathbf{0}$ and 1
- That means, every thing in computer MUST be represented using the symbols $\mathbf{0}$ and 1, only

Binary Codes: ASCII

Letter ASCII Binary Code
A
B
C
D
E
F

0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	0	0	1	1	0

- ASCII: American Standard Code for Information Interchange. (256 codes.)
- Used in computers to represent characters since 1963.
- ASCII uses 8-bits to represent one character of English language.
Letter ASCII Binary Code

ASCII Binary Code

0	1	1	0	0	0	0
0	1	1	0	0	0	1
0	1	1	0	0	0	1
0	1	1	0	0	1	0
0	1	1	0	0	1	0
0	1	1	0	0	1	1

- Space required to represent a single binary 0 or 1 is called bit.
- Space required to represent 8-bits is called a byte.
- See a complete list of ASCII codes here: www.ascii-code.com

Number Systems

- Binary Number System: Uses two unique symbols to represents numbers or data. (0 and 1).
- Decimal system: Use ten unique symbols to represent numbers. $(0,1,2,3,4,5,6$, 7,8 , and 9).
- Octal system: Use eight unique symbols to represent numbers. ($0,1,2,3,4,5,6$, and 7).
- Hexa-decimal system: Use sixteen unique symbols to represent numbers. (0, $1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F).
- We can convert between number systems.

1	1	1	1	1	1	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1

Liaqat Ali, Summer 2018.

Examples

Liaqat Ali, Summer 2018.

Converting from Decimal to binary

- 111
- 128 too large from 111,
- so there are zero 128 in 111.
- 111-64 = 47

1	1	1	1	1	1	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
0	1	1	0	1	1	1	1

- There is one 64 in 111, remainder 47.)
- 47-32 = 15 (there is one 32 in 47, remainder 15.)
- 16 too large (there are zero 16 in 15.)
- $15-8=7$ (there is one 8 in 15 , remainder 7.)
- $7-4=3 \quad$ (there is one 4 in 7 , remainder 3.)
- $3-2=1 \quad$ (there is one 3 in 3 , remainder 1.)

ASCII: Decimal Equivalent

Ketter ASCII Binary Code
A
B
C
D
E
F

128	64	32	16	8	4	2	1	
0	1	0	0	0	0	0	1	
0	1	0	0	0	0	1	0	$64+2=66$
0	1	0	0	0	0	1	1	$64+2+1=67$
0	1	0	0	0	1	0	0	$64+4=68$
0	1	0	0	0	1	0	1	$64+4+1=69$
0	1	0	0	0	1	1	0	$64+4+2=70$

- When we use Boolean expression ('a' < ' A '), computer would compare the ASCII value of a (which is 97) with the value of ASCII value of A (which is 65). So, answer: False
Liaqat Ali, Summer 2018.

Letter ASCII Binary Code

	128	64	32	16	8	4	2	1	
	0	1	1	0	0	0	0	1	$64+32+1=97$
b	0	1	1	0	0	0	1	0	
c	0	0	1	1	0	0	0	1	1
d	0	1	1	0	0	1	0	0	
e	0	1	1	0	0	1	0	1	
f	0	1	1	0	0	1	1	0	

- 'B' <= 'b'
- 'cd' <= 'ab'
- 'xyz' > 'XYZ'

Signed Integer Data Representation: Binary

- A signed integer: For a positive integer represented by N binary digits the possible values are $-2^{\mathrm{N}-1}-1<=$ value $<=2^{\mathrm{N}-1}-1$.

				Bina	igit			
		1	1	1	1	1	1	1
	+/-	2^{6}	2^{5}	2^{4}	2^{3}	$\mathbf{2}^{\mathbf{2}}$	2^{1}	2^{0}
+/- 127		64	32	16	8	4	2	1

+12	0	0	0	0	1	1	0	0
-12	1	0	0	0	1	1	0	0

Liaqat Ali, Summer 2018.

Signed Integer Data Representation: One's Complement

- Integer is represented by a string of binary digits.
- But, is represented in 1's compliment form. | $\begin{array}{c}\text { Sign } \\ \text { bit }\end{array}$ | $\mathbf{N - 1}$ Binary Digits: 1's Compliment |
| :---: | :---: |
- How a number is converted to its 1's Compliment form:

1. If a number is positive, simply convert the number to its binary equivalent. - For example, if the number is: $\mathbf{6} 00000110$
2. If a number is negative, convert the number to its binary equivalent and flip the bits.

- For example, if the number is: -6

00000110

- Flip the bits:

11111001

Signed Integer Data Representation: One's Complement

- Suppose an 8-bit 1's pattern is shown as: 10110001
- What number this pattern represents?
- If first bit 0, then it is an unsigned/positive number, as shown (simply convert it to its decimal equivalent).
- If first bit is 1, then:

1. Flip all the bits. So, $\mathbf{1 0 1 1} \mathbf{0 0 0 1}$ becomes $\mathbf{0 1 0 0} \mathbf{1 1 1 0}$
2. Convert to decimal: $01001110=2^{6}+2^{3}+2^{2}+2^{1}=64+8+4+2=78$
3. Add a minus sign. So $\mathbf{1 0 1 1 0 0 0 1}$ represents $\mathbf{- 7 8}$ in one's Complement form.

Examples: One’s complement

-84

1	0	1	0	1	0	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	1	0	1	0	1	0	0
-	64	0	16	0	4	0	0

Remember if first digit is1 flip bits.

35

0	0	1	0	0	0	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	0	1	0	0	0	1	1
	0	32	0	0	0	2	1

Adapted from: Janice Regan, 2013.

Decimal to 1s complement

- -49 (number < 0)
- Express 49 in 8 bit binary
-32+16+1
- 00110001
- Flip the bits
-11001110

Adapted from: Janice Regan, 2013.

Two's Complement Signed Integer Representation

- Integer is represented by a string of binary digits.
- Representation is in 2's compliment form.
- Right most bit is used for sing.
- Remaining bits represent the value.

| Sign |
| :---: | :---: |
| bit | N-1 Binary Digits: 2's Compliment

- Decimal to 2 's Compliment form:
- For a Positive Number:

1. First bit is 0 .
2. Convert the number to its binary equivalent.

- + 7 is represented as: 00000111
- + 13 is represented as: 00001101
- For a Negative Number:

1. Convert the number to its binary equivalent.
2. Flip the bits
3. Add 1.

- - 7 would be represented as:

1. Convert to binary: 00000111
2. Flip the bits: 11111000
3. Add 1. $1=11111001$

- -13 would be represented as:

1. Convert to binary: 00001101
2. Flip the bits: 11110010
3. Add 1.
$1=11110011$

Two's Complement Signed Integer Representation - 2

- 2's Compliment to Decimal:
- If first bit is 0 , then:

1. The number is positive.
2. Simply, convert the binary number to its decimal equivalent.

- 00010111 is 2^{\prime} s compliment representation of: $+2^{4}+2^{2}+2^{1}+2^{0}=+23$
- If first bit is 1 , then:
- The number is negative.
- Flip all the bits. So, 10110001 becomes 01001110
- Add 1.

$$
1=01001111
$$

- Convert to decimal: $01001111=2^{6}+2^{3}+2^{2}+2^{1}+2^{0}=64+8+4+2+1=79$
- So 1011001 represents -79

More Examples: Two's Complement to Decimal

Remember if first digit is 1 flip bits then add 1
-85

1	0	1	0	1	0	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	1	0	1	0	1	0	0
	1	0	1	0	1	0	1
-	64	0	16	0	4	0	1

35

0	0	1	0	0	0	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	0	1	0	0	0	1	1
	0	32	0	0	0	2	1

Adapted from: Janice Regan, 2013.

Using turtle in Python

- To make use of the turtle methods and functionalities, we need to import turtle.
- "turtle" comes packed with the standard Python package and need not be installed externally.
- Four steps for executing a turtle program :

1. Import the turtle module
2. Create a turtle to control (using Turtle())
3. Draw around using the turtle methods.
4. Run turtle.done().

Common Turtle Methods (See Documentation)

METHOD	PARAMETER	DESCRIPTION
Turtle()	None	Creates and returns a new tutrle object
forward()	amount	Moves the turtle forward by the specified amount
backward()	amount	Moves the turtle backward by the specified amount
right()	angle	Turns the turtle clockwise
left()	angle	Turns the turtle counter clockwise
penup()	None	Picks up the turtle's Pen
up()	None	Picks up the turtle's Pen
down()	None	Puts down the turtle's Pen
color()	Color name	Changes the color of the turtle's pen
fillcolor()	Color name	Changes the color of the turtle will use to fill a polygon

[^0]
Introduction to Functions

- Function: group of statements within a program that perform as specific task.
- Usually one task of a large program.
- Functions can be executed in order to perform overall program task.
- Known as divide and conquer approach
- Modularized program: program wherein each task within the program is in its own function.

Functions: A Divide and Conquer Approach

Function Example

\# Program to add two numbers. num1 = 5
num2 $=6$
sum $=$ num1 + num2
print(sum)
\# A user-defined function to add def add_numbers(x, y):

$$
\operatorname{sum}=x+y
$$

return sum
Imaginary dividing line
num1 = 5
num2 $=6$
sum = add_numbers(num1, num2)
print(sum)
main function area

Question 1

Q. What is the 1's complement for 10001001 binary numbers.
a. 01110110
b. 01011111
c. 00111001
d. 00001110

See answers on Slide 30.

Liaqat Ali, 2018: Adapted from: Copyright © 2018 Pearson Education, Inc.

Question 2

Q. Which of the following statements causes the interpreter to load the contents of the random module into memory?
a. load random
b. import random
c. upload random
d. download random

Question 3

Q. The Python standard library's \qquad module contains numerous functions that can be used in mathematical calculations.
a. math
b. string
c. random
d. number

Question 4

Q. What will be the output after the following code is executed?

def pass_it(x, y):

$$
z=x+", "+y
$$

a. Jhon King
b. King Jhon
c. Jhon, King
name2 = "Jhon"
d. King, Jhon
name1 = "King"
fullname = pass_it(name1, name2) ANS: d print(fullname)

Question 5

Q. What will be the output after the following code is executed?
def pass_it(x, y):
a. 4,8
z = x, ", ", y
b. 8,4
c. 48
num1 $=4$
d. None
num2 $=8$
answer = pass_it(num1, num2)
ANS: d print(answer)

Question 6

Q. When execute a function by:
a. calling it
b. locating it
c. defining it
d. exporting it

ANS: a

Liaqat Ali, 2018: Adapted from: Copyright © 2018 Pearson Education, Inc.

Answers

Answer 1 a
Answer 2 b
Answer 3 a
Answer 2 d
Answer 5 d
Answer 6 a

9

Questions?

[^0]: Adapted from: Janice Regan, 2013.

