
CMPT 120: Introduction to Computing Science 
and Programming 1 

Using Files for Data Input and 
Output 

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. 
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf


Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and Control Structures
5. Binary encodings
6. Fundamental algorithms
7. Basics of (Functions and) Recursion (Turtle Graphics)
8. Basics of computability and complexity

9. Basics of Data File management
2

Liaqat Ali, Summer 2018. 

7/8/2018

2



1. Introduction to File

2. Using File for Data Input  ( aside from using input() )

3. Using Files for Data Output ( aside from using print() )

3

Liaqat Ali, Summer 2018. 

7/10/2018

3

Today’s Topics



External storage

• When we shut down an application (e.g.: Python IDLE, Word or 
Excel) and/or turn off our computer, often we do not want our 
information (code, data) to disappear.

▫ We want our information to persist until the next time we use it. 

▫ We achieve persistence by saving our information to files on external 
storage like hard disk, flash memory, etc…

▫ We can use text files to store the input/output data. 

4

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Files                                  

• Text Files: 
▫ The sequence of 0’s and 1’s represents human-readable characters, i.e., 

UNICODE/ASCII characters 

▫ To view the content of a text file, one needs to use the appropriate 
application such as a text editor (notepad).

▫ Example: 

▫ In CMPT 120, we shall open or read text files to get data in to the 
program, or to write from a program.

5

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Introduction to Recursion
# Hardcode data inside 
program.

quiz1 = 45

quiz2 = 56

total = quiz1 + quiz2

print(total_mark)

# Get data from a text file.
# Opening a file for reading

fileR = open('mark_data.txt', 'r')
# Read its first line -> a string

quiz1 = fileR.readline()
# Read its second line -> a string

quiz2 = fileR.readline()
quiz1 = int(quiz1)
quiz2 = int(quiz2)
total = quiz1 + quiz2
print(total)
# Close the file

fileR.close( )

7/10/2018

6

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

# Get data using input() 
function.

quiz1 = int(input())

quiz2 = int(input())

total = quiz1 + quiz2

print(total_mark)



Open a file in a Python program
• To use a file in our Python program, we must first open it in the appropriate mode:

<fileObject> = open(filename, <mode>)

Optional string 
describing the way 
in which the file 
will be used.

Syntax:

• Where does the value of the variable filename come from?

• We can either ask the user to enter a filename (string) using input(), prior to 
the call to open( )

• OR

• We can assign a filename (string) to this variable at the top of our program, 
prior to the call to open( )

7

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



A word about the file named filename

• Python interpreter will look for a file with the filename in the current 
directory.

• What is the current directory?
▫ The directory that contains the Python program we are currently running.

• If filename is stored in another directory, we must add the proper path to it:

<path/filename>
▫ C:/my_folder/mark.txt

• This path can be part of the value assigned to the variable filename.

filename = path + filename

8

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



A word about <mode>

• A mode describes the way in which a file is to be used

• Python considers the following modes:

1. Read 

2. Write

3. Append

4. Read and write

9

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Open a File for Reading
• To read from a file, we need to first open it in read mode with 'r':

fileRead = open(<filename>, 'r’) 

OR fileRead = open(<filename>)

• fileRead is (called) a file object.

• If the file does not exists in the current directory, then:
▫ Python interpreter produces and prints an error.

FileNotFoundError: [Errno 2] No such file or 

directory: 'fileDoesNotExist.txt'

Syntax:

10

7/10/2018



Code Example
# Either ask user for a filename (and path, or set your

# filename variable once at the top of your program.

inputFile = “list_of_words.txt"

...

# Opening a file for reading

fileR = open(inputFile , 'r') 

# or 

fileR = open(inputFile )

11

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Open a File for Writing
• To write to a file, we need to first open it in write mode with 'w':

fileWrite = open(<filename>, ‘w')  

• fileWrite is a file object, i.e., a variable of type class.

• If the file already exists in the directory, its content is erased, ready to receive new data.

• If the file does not exists in the directory, then, it is created.

• Example:
outputFile = "newFile.txt"
# Opening a file for writing
fileW = open(outputFile, 'w')

Syntax:

12

7/11/2018



Open a File for Appending

Syntax: fileAppend = open(<filename>, ‘a')  

• fileReadWrite is a file object, i.e., a variable of type class.

• If the file already exists in the directory, new data will be automatically added 
to the end of the file, leaving the current content unaffected

• If the file does not exists in the directory, then, it is created.

• Example:

appendFile = “savedFile.txt"
# Opening a file for appending

fileA = open(appendFile, ‘a')

13

7/11/2018



Open a File for Reading and Writing

Syntax: fileReadWrite = open(<filename>, ‘r+')  

• fileReadWrite is a file object, i.e., a variable of type class.

• If the file already exists in the directory, new data will be automatically added 
to the end of the file, leaving the current content unaffected

• If the file does not exists in the directory, then, it is created.

• Example:

scoreFile = “savedFile.txt"
# Opening a file for appending

fileRW = open(scoreFile, ‘r+')

14

7/11/2018



Reading from a File

• File object provides methods for reading data from a file.

• To read a line from a file into a string:

▫ readline( ): This method reads characters from the file until it 
reaches a newline character and returns the result as a string.

▫ The file object keeps track of where it is in the file, so if we call 
readline( ) again, we get the next line (i.e., 2nd line)

▫ We can place the readline( ) method inside a loop to read all 
the lines from a file – one by one.  

15

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/11/2018



Example

# File_IO_Demo_Read_File.py

inputFile = 'bunch_of_words.txt'

# Opening a file for reading

fileR = open(inputFile, 'r')

# Read its first line -> a string

firstLine = fileR.readline()

print("\nfirst line: " , firstLine)

print("type(firstLine) is {}. 
".format(type(firstLine)))

16

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/11/2018

# Read its second line

# File object keeps track of the current line in file

secondLine = fileR.readline()

print("\nsecond line: " , secondLine)

# Close the file

fileR.close( )



Quiz Example: Reading a Line (more values) At a Time
inputFile = 'mark_data.txt'

# Demo 1 - Reading a line (more than one value) at a time.

print("\nDemo 1 - Reading a line at a time from a file.")

# Open the file for reading

fileR = open(inputFile, 'r')

# Read its first line -> a string

firstLine = fileR.readline()

# Split the string into a list

mark_list = firstLine.split()

# Store marks into variables

quiz1 = int(mark_list[0])

quiz2 = int(mark_list[1])

# add marks

total = quiz1 + quiz2

print(total)

# Close the file

fileR.close( )

7/11/2018

17

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.



Reading From a File in a Loop

• Efficient way to read the content of a file using a loop.
for line in fileR: 

# strip whitespaces and newline character

strippedLine = line.strip

# process strippedLine

3. To read all lines from a file into a list:
myList = list(fileR)

fileR.readlines()

18

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/11/2018



Code Example

...
# Opening a file for reading

fileR = open(inputFile, 'r’)

# Read all lines into list

myList1 = list(fileR)
print("\nfirst list: ", myList1)

# Close the file

fileR.close( )

19

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/11/2018

# Opening a file for reading

fileR = open(inputFile, 'r')

# Read all lines into list

myList2 = fileR.readlines( )
print("\nsecond list: ", myList2)

# Close the file

fileR.close( )



Writing from a File
• File object provides methods for writing data into a file.

• write() method writes data to a file.

numOfChars = fileWrite.write(aString)

▫ writes the contents of aString to the file.

▫ Stores number of characters written in numOfChars.   

• To write something other than a string, convert it to a string first using:
▫ str( )

▫ String formatting (e.g.:  %d)

▫ .format() method of string

20

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/11/2018



Code Examples

• See the following code files on our course web site:

1. File_IO_Demo_Write_to_File.py

2. File_IO_Demo_Read_File.py 

21

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Closing a file
• All the files must be closed:

<fileobject>.close( )

• Why?
▫ To finalize the file.
▫ To free up any system resources taken up by the open file.

▫ After calling close( ), we cannot use the file object anymore (in our 
Python program).

22

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Dealing with errors

• We saw that if the file does not exists, Python interpreter 
produces and prints an error.

FileNotFoundError: [Errno 2] No such file or 
directory: 'fileDoesNotExist.txt'

• We can write guardian code against this and other errors 
called “exceptions”.
▫ “exceptions” to the normal flow of execution.

23

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Catching exceptions
• Using the try statement (often called “try block”).

fileDoesNotExist = "fileDoesNotExist.txt" 

try:
fin = open(fileDoesNotExist)
for line in fin:

print(line) # and other processing
fin.close()

except:
print('\n%s not found' %fileDoesNotExist)

24

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Appending to a non-existing file?

fileToAppendToDoesNotExist = "fileToAppendToDoesNotExist.txt" 

# What happen when I append to a non-existing file?

fout = open(fileToAppendToDoesNotExist, 'a')

fout.write("Banana")

fout.close( )

25

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/10/2018



Class Participation: Exercise 9.1 (Textbook Page 84)

• Post on the Canvas on Friday, June 13 by 11:59pm.  

• Think Python 2 - Exercise 9.1: Write a program that reads 
words.txt and prints only the words with more than 20 
characters (not counting whitespace). (Page 84, Chapter 9. Case 
study: word play)

26

Liaqat Ali, 2018: Adapted from: Anne Lavergne, July 2017.

7/11/2018



7/8/2018

27

Questions?

Copyright © 2018 by Liaqat Ali


