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Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and Control Structures
5. Binary encodings
6. Fundamental algorithms
7. Basics of (Functions and) Recursion (Turtle Graphics)
8. Basics of computability and complexity

9. Basics of Data File management
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1. Introduction to File

2. Using File for Data Input  ( aside from using input() )

3. Using Files for Data Output ( aside from using print() )
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External storage

• When we shut down an application (e.g.: Python IDLE, Word or 
Excel) and/or turn off our computer, often we do not want our 
information (code, data) to disappear.

▫ We want our information to persist until the next time we use it. 

▫ We achieve persistence by saving our information to files on external 
storage like hard disk, flash memory, etc…

▫ We can use text files to store the input/output data. 
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Files                                  

• Text Files: 
▫ The sequence of 0’s and 1’s represents human-readable characters, i.e., 

UNICODE/ASCII characters 

▫ To view the content of a text file, one needs to use the appropriate 
application such as a text editor (notepad).

▫ Example: 

▫ In CMPT 120, we shall open or read text files to get data in to the 
program, or to write from a program.
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Introduction to Recursion
# Hardcode data inside 
program.

quiz1 = 45

quiz2 = 56

total = quiz1 + quiz2

print(total_mark)

# Get data from a text file.
# Opening a file for reading

fileR = open('mark_data.txt', 'r')
# Read its first line -> a string

quiz1 = fileR.readline()
# Read its second line -> a string

quiz2 = fileR.readline()
quiz1 = int(quiz1)
quiz2 = int(quiz2)
total = quiz1 + quiz2
print(total)
# Close the file

fileR.close( )

7/10/2018
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# Get data using input() 
function.

quiz1 = int(input())

quiz2 = int(input())

total = quiz1 + quiz2

print(total_mark)



Open a file in a Python program
• To use a file in our Python program, we must first open it in the appropriate mode:

<fileObject> = open(filename, <mode>)

Optional string 
describing the way 
in which the file 
will be used.

Syntax:

• Where does the value of the variable filename come from?

• We can either ask the user to enter a filename (string) using input(), prior to 
the call to open( )

• OR

• We can assign a filename (string) to this variable at the top of our program, 
prior to the call to open( )
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A word about the file named filename

• Python interpreter will look for a file with the filename in the current 
directory.

• What is the current directory?
▫ The directory that contains the Python program we are currently running.

• If filename is stored in another directory, we must add the proper path to it:

<path/filename>
▫ C:/my_folder/mark.txt

• This path can be part of the value assigned to the variable filename.

filename = path + filename
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A word about <mode>

• A mode describes the way in which a file is to be used

• Python considers the following modes:

1. Read 

2. Write

3. Append

4. Read and write
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Open a File for Reading
• To read from a file, we need to first open it in read mode with 'r':

fileRead = open(<filename>, 'r’) 

OR fileRead = open(<filename>)

• fileRead is (called) a file object.

• If the file does not exists in the current directory, then:
▫ Python interpreter produces and prints an error.

FileNotFoundError: [Errno 2] No such file or 

directory: 'fileDoesNotExist.txt'

Syntax:
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Code Example
# Either ask user for a filename (and path, or set your

# filename variable once at the top of your program.

inputFile = “list_of_words.txt"

...

# Opening a file for reading

fileR = open(inputFile , 'r') 

# or 

fileR = open(inputFile )
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Open a File for Writing
• To write to a file, we need to first open it in write mode with 'w':

fileWrite = open(<filename>, ‘w')  

• fileWrite is a file object, i.e., a variable of type class.

• If the file already exists in the directory, its content is erased, ready to receive new data.

• If the file does not exists in the directory, then, it is created.

• Example:
outputFile = "newFile.txt"
# Opening a file for writing
fileW = open(outputFile, 'w')

Syntax:
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Open a File for Appending

Syntax: fileAppend = open(<filename>, ‘a')  

• fileReadWrite is a file object, i.e., a variable of type class.

• If the file already exists in the directory, new data will be automatically added 
to the end of the file, leaving the current content unaffected

• If the file does not exists in the directory, then, it is created.

• Example:

appendFile = “savedFile.txt"
# Opening a file for appending

fileA = open(appendFile, ‘a')
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Open a File for Reading and Writing

Syntax: fileReadWrite = open(<filename>, ‘r+')  

• fileReadWrite is a file object, i.e., a variable of type class.

• If the file already exists in the directory, new data will be automatically added 
to the end of the file, leaving the current content unaffected

• If the file does not exists in the directory, then, it is created.

• Example:

scoreFile = “savedFile.txt"
# Opening a file for appending

fileRW = open(scoreFile, ‘r+')
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Reading from a File

• File object provides methods for reading data from a file.

• To read a line from a file into a string:

▫ readline( ): This method reads characters from the file until it 
reaches a newline character and returns the result as a string.

▫ The file object keeps track of where it is in the file, so if we call 
readline( ) again, we get the next line (i.e., 2nd line)

▫ We can place the readline( ) method inside a loop to read all 
the lines from a file – one by one.  
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Example

# File_IO_Demo_Read_File.py

inputFile = 'bunch_of_words.txt'

# Opening a file for reading

fileR = open(inputFile, 'r')

# Read its first line -> a string

firstLine = fileR.readline()

print("\nfirst line: " , firstLine)

print("type(firstLine) is {}. 
".format(type(firstLine)))
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# Read its second line

# File object keeps track of the current line in file

secondLine = fileR.readline()

print("\nsecond line: " , secondLine)

# Close the file

fileR.close( )



Quiz Example: Reading a Line (more values) At a Time
inputFile = 'mark_data.txt'

# Demo 1 - Reading a line (more than one value) at a time.

print("\nDemo 1 - Reading a line at a time from a file.")

# Open the file for reading

fileR = open(inputFile, 'r')

# Read its first line -> a string

firstLine = fileR.readline()

# Split the string into a list

mark_list = firstLine.split()

# Store marks into variables

quiz1 = int(mark_list[0])

quiz2 = int(mark_list[1])

# add marks

total = quiz1 + quiz2

print(total)

# Close the file

fileR.close( )

7/11/2018
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Reading From a File in a Loop

• Efficient way to read the content of a file using a loop.
for line in fileR: 

# strip whitespaces and newline character

strippedLine = line.strip

# process strippedLine

3. To read all lines from a file into a list:
myList = list(fileR)

fileR.readlines()
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Code Example

...
# Opening a file for reading

fileR = open(inputFile, 'r’)

# Read all lines into list

myList1 = list(fileR)
print("\nfirst list: ", myList1)

# Close the file

fileR.close( )
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# Opening a file for reading

fileR = open(inputFile, 'r')

# Read all lines into list

myList2 = fileR.readlines( )
print("\nsecond list: ", myList2)

# Close the file

fileR.close( )



Writing from a File
• File object provides methods for writing data into a file.

• write() method writes data to a file.

numOfChars = fileWrite.write(aString)

▫ writes the contents of aString to the file.

▫ Stores number of characters written in numOfChars.   

• To write something other than a string, convert it to a string first using:
▫ str( )

▫ String formatting (e.g.:  %d)

▫ .format() method of string
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Code Examples

• See the following code files on our course web site:

1. File_IO_Demo_Write_to_File.py

2. File_IO_Demo_Read_File.py 
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Closing a file
• All the files must be closed:

<fileobject>.close( )

• Why?
▫ To finalize the file.
▫ To free up any system resources taken up by the open file.

▫ After calling close( ), we cannot use the file object anymore (in our 
Python program).
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Dealing with errors

• We saw that if the file does not exists, Python interpreter 
produces and prints an error.

FileNotFoundError: [Errno 2] No such file or 
directory: 'fileDoesNotExist.txt'

• We can write guardian code against this and other errors 
called “exceptions”.
▫ “exceptions” to the normal flow of execution.
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Catching exceptions
• Using the try statement (often called “try block”).

fileDoesNotExist = "fileDoesNotExist.txt" 

try:
fin = open(fileDoesNotExist)
for line in fin:

print(line) # and other processing
fin.close()

except:
print('\n%s not found' %fileDoesNotExist)
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Appending to a non-existing file?

fileToAppendToDoesNotExist = "fileToAppendToDoesNotExist.txt" 

# What happen when I append to a non-existing file?

fout = open(fileToAppendToDoesNotExist, 'a')

fout.write("Banana")

fout.close( )
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Class Participation: Exercise 9.1 (Textbook Page 84)

• Post on the Canvas on Friday, June 13 by 11:59pm.  

• Think Python 2 - Exercise 9.1: Write a program that reads 
words.txt and prints only the words with more than 20 
characters (not counting whitespace). (Page 84, Chapter 9. Case 
study: word play)
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Questions?
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