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Reminders

Liagat Ali, Summer 2018.
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One-Stop Access To Course Information

e Course website: One-stop access to all course information.
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http://www2.cs.sfu.ca/CourseCentral/120/liagata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assighments

- CourSys/Canvas link - and more...

e Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

e CourSys: Assignments submission, grades - www.coursys.sfu.ca

Liagat Ali, Summer 2018.
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Course Topics

1.  General introduction
2 Algorithms, flow charts and pseudocode
3 Procedural programming in Python
4 Data types and Control Structures
5. Binary encodings
6. Fundamental algorithms
7
8
9

Basics of (Functions and) Recursion (Turtle Graphics)
Basics of computability and complexity
Subject to time availability:

. Basics of Data File management

Liagat Ali, Summer 2018.




2.
3.

Introduction to Recursion
Problem Solving with Recursion
Examples of Recursive Algorithms

Liagat Ali, Summer 2018.
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Introduction to Recursion

# Recursion: A way of coding an algorithm without needing loops.
e |nstead, a problem is solved by recursively calling the function itself.
e Recursive function: a function that calls itself.
e A recursive function:
1. must have a function call to itself.

2. must have a way to control the number of times it calls itself/repeats.

e Usually involves an if-else statement which defines:
e when the function should end (base case), and
e when it should call itself.

~* Depth of recursion: The number of times a function calls itself.

Liagat Ali, 2018: Adapted from:



https://interactivepython.org/runestone/static/pythonds/Recursion/TheThreeLawsofRecursion.html

0l=1

1'=1x1
21=2x1x1
31=3x2x1x1
41=4x3x2x1x1

Ool=1

11=1x 0!
21=2x1!
31=3x2!
41 =4 x 3|
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Introduction to Recursion: Factorial Example

~ o [n mathematics, the n! notation represents the factorial of a number n
o Forn=0,nl=1
o Forn>0,n!=1x2x3x...xXnN
e The above definition lends itself to recursive programming
= N =0 is the base case

o N>0is the recursive case

e factorial(n) = n x factorial(n-1)
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Introduction to Recursion

_~# Factorial by loop # Factorial by recursion. "
# setup variables # define a recursive function "
number =4 def get_factorial(number):
repeat=1 # Base case and recursive calls
factorial = 1 if number < 1: #base case

factorial=1
# find factorial using a loop method return factorial
while repeat <= number: else:
factorial = factorial * repeat factorial = number * get_factorial(number - 1)
repeat+=1 return factorial
# Main
print(factorial) factorial = get_factorial(number)

print(factorial)
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Introduction to Recursion: Tree Example

Liagat Ali, 2018
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T
LILp ]

L turtle

recurzsive function to draw a tree

draw tree(level, branch length):

#L=z long a3 we are not at the leaf lewvel

if level>0:
$1. Draw a branch
turtle.forward (branch length)

#2. Turn left and make a2 mini tree

turtle.left (40)

draw tree(level-1, branch_lengthfl.

$#3. Turn back
turtle.right (40)

#4. Turn righ and make 2 mini tree
turtle.right (40)

draw_tree (level-1, branch_lengthfl.

#4. Go back
turtle.left (40)
turtle.back(branch length)

F Otherwise

# Stop the leaf
turtle.color ("green™)
turtle.=stamp ()
turtle.color ("brown™)

61}

61)

A
function

The function
call that
starts it all!

F Main

F Mowve
turtle
turtle
turtle
turtle
turtle

program

the turtle

.Speed (0)
-penup ()
.goto (0,
.1left (90)
pendown ()

~180)

# Setup drawing
turtle.color ("brown"™)
turtle.width(3)
turtle.shape ("triangle™)

# Call the draw tree function

draw tree(l, 120)

. Adapted from: Angelica Lim, Spring 2018
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Introduction to Recursion: Tree Example

F Call the draw tree function
draw tree(l, 120)

F Call the draw tree function
draw tree (2, 120)

Liagat Ali, 2018: Adapted from: Angelica Lim, Spring 2018
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Introduction to Recursion: Tree Example
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F Call the draw tree function
draw tree(l, 120)

F Call the draw tree function

draw tree(l, 120)

How would you
modify the
function to get
this tree?

Liagat Ali, 2018: Adapted from: Angelica Lim, Spring 2018




s All the examples shown so far were of direct recursion

e Indirect recursion: when function A calls function B,
which in turn calls function A
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Problem Solving with Recursion

~ e Recursion is a powerful tool for solving repetitive problems
e Recursion is never required to solve a problem.

e Any problem that can be solved recursively can be solved with a loop.

e Recursive algorithms usually less efficient than iterative ones.

e Due to overhead of each function call.
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Recursion versus Looping

e Some problems are more easily solved with recursion than with a

e Reasons not to use recursion:

o Less efficient: entails function calling overhead that is not necessary with

a loop
= Usually a solution using a loop is more evident than a recursive solution

loop
= Example: Fibonacci, where the mathematical definition lends itself to
recursion.
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More Examples of Recursive Algorithms

~ o Summing a range of list elements with recursion

= Function receives a list containing range of elements to be summed, index of
starting item in the range, and index of ending item in the range

o Base case:
eif start index > end index return 0

o Recursive case:

e return current number + sum(list, start+l, end)
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More Examples of Recursive Algorithms (cont’d.)

# The range sum function returns the sum of a specified
# range of items 1in num list. The start parameter
# specifies the index of the starting item. The end
# parameter specifies the index of the ending item.
def range sum(num list, start, end):
if start > end:
return O
else:
return num list[start] + range sum(num list, start + 1, end)
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The Fibonacci Series
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" e Fibonacci series: has two base cases

= 1f n = 0 then Fib(n) 0
s 1f n = 1 then Fib(n) =1
= if n > 1 then Fib(n) = Fib(n-1)

e Corresponding function code:

+ Fib(n-2)

# The fib function returns the nth number
# in the Fibonacci series.
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)
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Finding the Greatest Common Divisor

~ e Calculation of the greatest common divisor (GCD) of two positive integers
o |f x can be evenly divided by y, then
: gcd(x,y) =y
o Otherwise, gcd(x,y) = gcd(y, remainder of x/y)
e Corresponding function code:

# The gcd function returns the greatest common
# divisor of two numbers.
def gcd(x, Vv):

if x & y ==

return y
E else:
. return gcd(x, X % y)
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Questions?
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