SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

CMPT 120: Introduction to Computing Science
and Programming 1

Recursion: Functions That
Call Themselves

4 python

Copyright © 2018, Liagat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

ENGAGING THE WORLD

7/8/2018

Reminders

Liagat Ali, Summer 2018.

SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

One-Stop Access To Course Information

e Course website: One-stop access to all course information.

7/8/2018

http://www2.cs.sfu.ca/CourseCentral/120/liagata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assighments

- CourSys/Canvas link - and more...

e Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

e CourSys: Assignments submission, grades - www.coursys.sfu.ca

Liagat Ali, Summer 2018.

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

7/8/2018

Course Topics

1. General introduction
2 Algorithms, flow charts and pseudocode
3 Procedural programming in Python
4 Data types and Control Structures
5. Binary encodings
6. Fundamental algorithms
7
8
9

Basics of (Functions and) Recursion (Turtle Graphics)
Basics of computability and complexity
Subject to time availability:

. Basics of Data File management

Liagat Ali, Summer 2018.

2.
3.

Introduction to Recursion
Problem Solving with Recursion
Examples of Recursive Algorithms

Liagat Ali, Summer 2018.

SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Recursion

7/9/2018

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Introduction to Recursion

Recursion: A way of coding an algorithm without needing loops.
e |nstead, a problem is solved by recursively calling the function itself.
e Recursive function: a function that calls itself.
e A recursive function:
1. must have a function call to itself.

2. must have a way to control the number of times it calls itself/repeats.

e Usually involves an if-else statement which defines:
e when the function should end (base case), and
e when it should call itself.

~* Depth of recursion: The number of times a function calls itself.

Liagat Ali, 2018: Adapted from:

https://interactivepython.org/runestone/static/pythonds/Recursion/TheThreeLawsofRecursion.html

0l=1

1'=1x1
21=2x1x1
31=3x2x1x1
41=4x3x2x1x1

Ool=1

11=1x 0!
21=2x1!
31=3x2!
41 =4 x 3|

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Introduction to Recursion: Factorial Example

~ o [n mathematics, the n! notation represents the factorial of a number n
o Forn=0,nl=1
o Forn>0,n!=1x2x3x...xXnN
e The above definition lends itself to recursive programming
= N =0 is the base case

o N>0is the recursive case

e factorial(n) = n x factorial(n-1)

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

7/9/2018

Introduction to Recursion

_~# Factorial by loop # Factorial by recursion. "
setup variables # define a recursive function "
number =4 def get_factorial(number):
repeat=1 # Base case and recursive calls
factorial = 1 if number < 1: #base case

factorial=1
find factorial using a loop method return factorial
while repeat <= number: else:
factorial = factorial * repeat factorial = number * get_factorial(number - 1)
repeat+=1 return factorial
Main
print(factorial) factorial = get_factorial(number)

print(factorial)

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Introduction to Recursion: Tree Example

Liagat Ali, 2018

7/9/2018

T
LILp]

L turtle

recurzsive function to draw a tree

draw tree(level, branch length):

#L=z long a3 we are not at the leaf lewvel

if level>0:
$1. Draw a branch
turtle.forward (branch length)

#2. Turn left and make a2 mini tree

turtle.left (40)

draw tree(level-1, branch_lengthfl.

$#3. Turn back
turtle.right (40)

#4. Turn righ and make 2 mini tree
turtle.right (40)

draw_tree (level-1, branch_lengthfl.

#4. Go back
turtle.left (40)
turtle.back(branch length)

F Otherwise

Stop the leaf
turtle.color ("green™)
turtle.=stamp ()
turtle.color ("brown™)

61}

61)

A
function

The function
call that
starts it all!

F Main

F Mowve
turtle
turtle
turtle
turtle
turtle

program

the turtle

.Speed (0)
-penup ()
.goto (0,
.1left (90)
pendown ()

~180)

Setup drawing
turtle.color ("brown"™)
turtle.width(3)
turtle.shape ("triangle™)

Call the draw tree function

draw tree(l, 120)

. Adapted from: Angelica Lim, Spring 2018

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Introduction to Recursion: Tree Example

F Call the draw tree function
draw tree(l, 120)

F Call the draw tree function
draw tree (2, 120)

Liagat Ali, 2018: Adapted from: Angelica Lim, Spring 2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Introduction to Recursion: Tree Example

7/9/2018

F Call the draw tree function
draw tree(l, 120)

F Call the draw tree function

draw tree(l, 120)

How would you
modify the
function to get
this tree?

Liagat Ali, 2018: Adapted from: Angelica Lim, Spring 2018

s All the examples shown so far were of direct recursion

e Indirect recursion: when function A calls function B,
which in turn calls function A

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Problem Solving with Recursion

~ e Recursion is a powerful tool for solving repetitive problems
e Recursion is never required to solve a problem.

e Any problem that can be solved recursively can be solved with a loop.

e Recursive algorithms usually less efficient than iterative ones.

e Due to overhead of each function call.

SFU SIMON FRASER UNIVERSITY

7/9/2018

ENGAGING THE WORLD

Recursion versus Looping

e Some problems are more easily solved with recursion than with a

e Reasons not to use recursion:

o Less efficient: entails function calling overhead that is not necessary with

a loop
= Usually a solution using a loop is more evident than a recursive solution

loop
= Example: Fibonacci, where the mathematical definition lends itself to
recursion.

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

More Examples of Recursive Algorithms

~ o Summing a range of list elements with recursion

= Function receives a list containing range of elements to be summed, index of
starting item in the range, and index of ending item in the range

o Base case:
eif start index > end index return 0

o Recursive case:

e return current number + sum(list, start+l, end)

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

More Examples of Recursive Algorithms (cont’d.)

The range sum function returns the sum of a specified
range of items 1in num list. The start parameter
specifies the index of the starting item. The end
parameter specifies the index of the ending item.
def range sum(num list, start, end):
if start > end:
return O
else:
return num list[start] + range sum(num list, start + 1, end)

SFU SIMON FRASER UNIVERSITY

ENGAGING THE WORLD

The Fibonacci Series

7/9/2018

" e Fibonacci series: has two base cases

= 1f n = 0 then Fib(n) 0
s 1f n = 1 then Fib(n) =1
= if n > 1 then Fib(n) = Fib(n-1)

e Corresponding function code:

+ Fib(n-2)

The fib function returns the nth number
in the Fibonacci series.
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)

7/9/2018

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Finding the Greatest Common Divisor

~ e Calculation of the greatest common divisor (GCD) of two positive integers
o |f x can be evenly divided by y, then
: gcd(x,y) =y
o Otherwise, gcd(x,y) = gcd(y, remainder of x/y)
e Corresponding function code:

The gcd function returns the greatest common
divisor of two numbers.
def gcd(x, Vv):

if x & y ==

return y
E else:
. return gcd(x, X % y)

7/8/2018

Questions?

Copyright © 2018 by Liagat Ali

