
CMPT 120: Introduction to Computing Science
and Programming 1

Recursion: Functions That
Call Themselves

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Reminders
2

Liaqat Ali, Summer 2018.

7/8/2018

2

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
3

Liaqat Ali, Summer 2018.

7/8/2018

3

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and Control Structures

5. Binary encodings
6. Fundamental algorithms
7. Basics of (Functions and) Recursion (Turtle Graphics)
8. Basics of computability and complexity
9. Subject to time availability:
▫ Basics of Data File management

4

Liaqat Ali, Summer 2018.

7/8/2018

4

1. Introduction to Recursion

2. Problem Solving with Recursion

3. Examples of Recursive Algorithms

5

Liaqat Ali, Summer 2018.

7/8/2018

5

Today’s Topics

6

Recursion

7/9/2018

Introduction to Recursion
• Recursion: A way of coding an algorithm without needing loops.

• Instead, a problem is solved by recursively calling the function itself.
• Recursive function: a function that calls itself.
• A recursive function:

1. must have a function call to itself.
2. must have a way to control the number of times it calls itself/repeats.

• Usually involves an if-else statement which defines:
• when the function should end (base case), and
• when it should call itself.

• Depth of recursion: The number of times a function calls itself.
• Read: The Three Laws of Recursion

7

7/9/2018

Liaqat Ali, 2018: Adapted from:

https://interactivepython.org/runestone/static/pythonds/Recursion/TheThreeLawsofRecursion.html

Introduction to Recursion: Factorial Example
• Let’s consider a factorial problem.

0! = 1

1! = 1 x 1

2! = 2 x 1 x 1

3! = 3 x 2 x 1 x 1

4! = 4 x 3 x 2 x 1 x 1

0! = 1

1! = 1 x 0!

2! = 2 x 1!

3! = 3 x 2!

4! = 4 x 3!

7/9/2018

88

Introduction to Recursion: Factorial Example

• In mathematics, the n! notation represents the factorial of a number n

▫ For n = 0, n! = 1

▫ For n > 0, n! = 1 x 2 x 3 x … x n

• The above definition lends itself to recursive programming

▫ n = 0 is the base case

▫ n > 0 is the recursive case

• factorial(n) = n x factorial(n-1)

7/9/2018

99

Introduction to Recursion
Factorial by loop
setup variables
number = 4
repeat = 1
factorial = 1

find factorial using a loop method
while repeat <= number:

factorial = factorial * repeat
repeat+=1

print(factorial)

Factorial by recursion
define a recursive function

def get_factorial(number):
Base case and recursive calls

if number < 1: # base case

factorial= 1
return factorial

else:
factorial = number * get_factorial(number - 1)
return factorial

Main

factorial = get_factorial(number)
print(factorial)

7/9/2018

1010

Introduction to Recursion: Tree Example

11

7/9/2018

Liaqat Ali, 2018: Adapted from: Angelica Lim, Spring 2018

The function

call that
starts it all!

A recursive
function

Introduction to Recursion: Tree Example

7/9/2018

12

Liaqat Ali, 2018: Adapted from: Angelica Lim, Spring 2018

Introduction to Recursion: Tree Example

7/9/2018

13

Liaqat Ali, 2018: Adapted from: Angelica Lim, Spring 2018

How would you

modify the

function to get

this tree?

Direct and Indirect Recursion

•Direct recursion: when a function directly calls itself

▫ All the examples shown so far were of direct recursion

•Indirect recursion: when function A calls function B,
which in turn calls function A

7/9/2018

14

Problem Solving with Recursion

• Recursion is a powerful tool for solving repetitive problems

• Recursion is never required to solve a problem.

• Any problem that can be solved recursively can be solved with a loop.

• Recursive algorithms usually less efficient than iterative ones.

• Due to overhead of each function call.

7/9/2018

1515

Recursion versus Looping

• Reasons not to use recursion:

▫ Less efficient: entails function calling overhead that is not necessary with
a loop

▫ Usually a solution using a loop is more evident than a recursive solution

• Some problems are more easily solved with recursion than with a
loop

▫ Example: Fibonacci, where the mathematical definition lends itself to
recursion.

7/9/2018

16

More Examples of Recursive Algorithms

• Summing a range of list elements with recursion
▫ Function receives a list containing range of elements to be summed, index of

starting item in the range, and index of ending item in the range

▫ Base case:
•if start index > end index return 0

▫ Recursive case:
• return current_number + sum(list, start+1, end)

7/9/2018

17

More Examples of Recursive Algorithms (cont’d.)

7/9/2018

18

The Fibonacci Series

• Fibonacci series: has two base cases
▫ if n = 0 then Fib(n) = 0

▫ if n = 1 then Fib(n) = 1

▫ if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

• Corresponding function code:

7/9/2018

19

Finding the Greatest Common Divisor
• Calculation of the greatest common divisor (GCD) of two positive integers

▫ If x can be evenly divided by y, then

▫ gcd(x,y) = y

▫ Otherwise, gcd(x,y) = gcd(y, remainder of x/y)

• Corresponding function code:

7/9/2018

20

7/8/2018

21

Questions?

Copyright © 2018 by Liaqat Ali

