
CMPT 120: Introduction to Computing Science
and Programming 1

Functions

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Reminders
2

Liaqat Ali, Summer 2018.

7/8/2018

2

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
3

Liaqat Ali, Summer 2018.

7/8/2018

3

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and Control Structures

5. Binary encodings
6. Fundamental algorithms
7. Basics of (Functions and) Recursion (Turtle Graphics)
8. Basics of computability and complexity
9. Subject to time availability:
▫ Basics of Data File management

4

Liaqat Ali, Summer 2018.

7/8/2018

4

1. Function: In-Class Code
▫ Defining and Calling a Void Function

▫ Defining and Calling a Value-Returning Function

2. Generating Random Numbers

3. Using the math Module

4. Storing Functions in Modules

5. Turtle Graphics: Module Approach
5

Liaqat Ali, Summer 2018.

7/8/2018

5

Today’s Topics

Defining and Calling a Void Function
• Write a Python program calc.py that

1. Defines and calls a menu function.
2. The function prints the following

lines and do not return any value:
Enter A to add numbers:
Enter S to subtract numbers:

calc.py
define a menu function
def menu():

print(“Enter A to add numbers: ”)
print(“Enter S to subtract numbers: ”)

call the menu function
menu()

• Write a Python program circ.py that
1. Draws a circle for given diameter(25).
2. The function do not return any value.
3. Call the function to circle of diameter

50.

circ.py
define a circle function
def circle(diameter):

turtle.circle(diameter)
call the circle function
import turtle
circle(25)
circle(50)

7/8/2018

6

Liaqat Ali, 2018.

Defining and Calling a Value-Returning Function
• Write a Python program calc.py that

1. Defines and calls an add function.
2. The function adds two given

numbers and returns the sum value.

calc.py
define the add function
def add(num1, num2):

sum = num1 + num2
return sum

call the add function
result = add(56, 78)

• Write a Python program enroll.py that
1. defines and calls a name function.
2. The function inputs first name and last

name. It returns both first and last
names.

enroll.py
define the name function
def name():

fname = input(“Enter first name: “)
sname = input(“Enter second name: “)
return fname, sname

call the name function
f_name, s_name = name()

7/8/2018

7

Liaqat Ali, 2018.

Generating Random Numbers
• Random number are useful in a lot of programming tasks

• Python includes a module called random for working with random numbers.

• The random module includes various functions to generate random numbers.
• randint() randrange() random() uniform()

• Import the random module to use (call) the random functions.
• Use of module requires an import random statement.

• Format: module_name.function_name()

random.randint()
random.randint(1, 10)
number = random.randint(1, 10)

8

7/8/2018

Liaqat Ali, 2018: Adapted from:

Random Number Functions
• randint(): generates a random number in the range provided by the

arguments.

• randrange: similar to range function, but returns randomly selected integer
from the specified range:

random.randrange(10) For example: 9

random.randrange(11, 30) For example: 25

random.randrange(100, 200, 5) For example: 155

• random function: It returns a random float in the range of 0.0 and 1.0
• The random function does not receive any arguments.

• uniform function: returns a random float but allows user to specify range.

9

7/8/2018

Liaqat Ali, 2018: Adapted from:

Random Number Seeds

• Random number functions use clock time as a seed value.

• We can specify our own seed value.

• random.seed()

• random.seed(10)

• A seed value initializes the function.

• Same seed value generate a same set of random numbers.

10

7/8/2018

Liaqat Ali, 2018: Adapted from:

The math Module

•math module: A part of standard library that contains functions
for performing mathematical calculations.

▫ Typically accept one or more values as arguments, perform
mathematical operation, and return the result

▫ Use of module requires an import math statement.

▫ Example:

circle_area = math.pi * radius**2

11

7/8/2018

Liaqat Ali, 2018.

The math Module

12

7/8/2018

Liaqat Ali, 2018: Adapted from:

Storing Functions in Modules
• Modularization: Grouping of related functions in modules (Python files) for

better organization.
▫ Makes program easier to understand, test, and maintain.
▫ Make it easier to reuse code for multiple different programs.
▫ We import the required modules in the program.

• Module is a file that contains Python code.
▫ Contains function definition but does not contain calls to the functions.

• Importing programs will call the functions.

• Rules for module names:
▫ File name should end in .py
▫ Cannot be the same as a Python keyword

• Import module using import statement
Liaqat Ali, 2018: Adapted from:

7/8/2018

13

Storing Functions in Modules: Example
circle.py

#The circle module has functions that perform

calculations related to circles.

import math
The area function accepts a circle's radius as an

argument and returns the area of the circle.

def area(radius):

return math.pi * radius**2
The circumference function accepts a circle’s

radius and returns the circle's circumference.

def circumference(radius):

return 2 * math.pi * radius

rectangle.py

The rectangle module has functions that perform

calculations related to rectangles.

The area function accepts a rectangle's width and

length as arguments and returns the rectangle's area.

def area(width, length):

return width * length
The perimeter function accepts a rectangle's width

and length as arguments and returns the

rectangle’s perimeter.

def perimeter(width, length):

return 2 * (width + length)

7/8/2018

Liaqat Ali, 2018: Adapted from:

14

Storing Functions in Modules: Example
import circle

Import rectangle

circ_area = circle.area(10)

circ_circum = circle.circumference(10)

rect_area = rectangle.area(10)

rect_peri = rectangle. perimeter(10)

7/8/2018

Liaqat Ali, 2018: Adapted from:

15

Menu Driven Programs

• Menu-driven program: displays a list of operations on the screen, allowing
user to select the desired operation

▫ List of operations displayed on the screen is called a menu

• Program uses a decision structure to determine the selected menu option
and required operation.

▫ Typically repeats until the user quits.

▫ See: geometry.py program.

Liaqat Ali, 2018: Adapted from:

7/8/2018

16

Turtle Graphics: Modularizing Code with Functions
• Commonly needed turtle graphics operations can be stored in functions and then

called whenever needed.

• For example, the following function draws a square. The parameters specify the
location, width, and color.

def square(x, y, width, color):

turtle.penup() # Raise the pen

turtle.goto(x, y) # Move to (X,Y)

turtle.fillcolor(color) # Set the fill color

turtle.pendown() # Lower the pen

turtle.begin_fill() # Start filling

for count in range(4): # Draw a square

turtle.forward(width)

turtle.left(90)

turtle.end_fill() # End filling

Liaqat Ali, 2018: Adapted from:

7/8/2018

17

Turtle Graphics: Modularizing Code with Functions
• The following code calls the previously shown square function to draw three squares:

square(100, 0, 50, 'red')

square(-150, -100, 200, 'blue')

square(-200, 150, 75, 'green')

7/8/2018

18

Turtle Graphics: Modularizing Code with Functions
• The following function draws a circle. The parameters specify the location, radius, and

color.

def circle(x, y, radius, color):

turtle.penup() # Raise the pen

turtle.goto(x, y - radius) # Position the turtle

turtle.fillcolor(color) # Set the fill color

turtle.pendown() # Lower the pen

turtle.begin_fill() # Start filling

turtle.circle(radius) # Draw a circle

turtle.end_fill() # End filling

Liaqat Ali, 2018: Adapted from:

7/8/2018

19

Turtle Graphics: Modularizing Code with Functions
• The following code calls the previously shown circle function to draw three circles:

circle(0, 0, 100, 'red')

circle(-150, -75, 50, 'blue')

circle(-200, 150, 75, 'green')

Liaqat Ali, 2018: Adapted from:

7/8/2018

20

Turtle Graphics: Modularizing Code with Functions
• The following function draws a line. The parameters specify the starting and ending

locations, and color.

def line(startX, startY, endX, endY, color):

turtle.penup() # Raise the pen

turtle.goto(startX, startY) # Move to the starting point

turtle.pendown() # Lower the pen

turtle.pencolor(color) # Set the pen color

turtle.goto(endX, endY) # Draw a square

Liaqat Ali, 2018: Adapted from:

7/8/2018

21

Turtle Graphics: Modularizing Code with Functions
• The following code calls the previously shown line function to draw a triangle:

TOP_X = 0

TOP_Y = 100

BASE_LEFT_X = -100

BASE_LEFT_Y = -100

BASE_RIGHT_X = 100

BASE_RIGHT_Y = -100

line(TOP_X, TOP_Y, BASE_LEFT_X, BASE_LEFT_Y, 'red')

line(TOP_X, TOP_Y, BASE_RIGHT_X, BASE_RIGHT_Y, 'blue')

line(BASE_LEFT_X, BASE_LEFT_Y, BASE_RIGHT_X, BASE_RIGHT_Y, 'green')

Liaqat Ali, 2018: Adapted from:

7/8/2018

22

7/8/2018

23

Questions?

Copyright © 2018 by Liaqat Ali

