
CMPT 120
Topic: Functions – Part 4

Developing Software that incorporates Functions

© Anne Lavergne, July 2017

Learning outcomes
At the end of this course, a student is expected to:

• Create (design) small to medium size programs using
Python:

• Decompose a Python program into functions

• Use the core features of Python to design programs to
solve problems: variables, expressions, terminal input and
output, type conversion, conditionals, iteration, functions,
standard library modules

• Design programs requiring approximately 100 lines and 6
functions (of well-designed code)

• Describe the benefits of using functions

• Construct functions such that:

• Functions have a single purpose (decomposition)

• Functions are reusable (generalisation)

• Functions include parameters and local variables

• Functions return values

• etc…

2

Case Study
• Case study: developing software that

incorporates functions

• In the process, we shall point out a few

guidelines:

• Decomposition

• Incremental Development

• Function Interface Design

• Generalization

• Composition

• Encapsulation

3

Creating functions in our
software
Two ways of going about this!

Way 1

• If the software does not already exist, we can
design and implement our solution incorporating
functions

Way 2

• If the software already exist, we can encapsulate
some of its code fragments (the ones with one
specific purpose/repeated code fragments) into
functions 4

Way 1 : Developing software
incorporating functions
• Incorporating functions into our software as

we are developing it!

Let’s illustrate the development of software (a

Python program) incorporating functions with a

case study called Area Calculator

5

Step 1 – Problem Statement

• Problem statement: Develop a Python program

to compute the area of various shapes:

triangle, circle, rectangle, square, ellipse

6

Step 2 – Applying Decomposition

• As we design a solution, we decompose it into

actions --> functions

Compute the area of

various shapes: triangle,

circle, rectangle,

square, ellipse

Print

menu

Get option

from user

+ validate

Get input

from user

+ validate

Compute

desired

area

Display

result

7

Decomposition in the real world

Getting myself to SFU

in the morning

Wake up Wash up
Get

dressed

Eat

breakfast

Take

the bus

8

Step 2 – Algorithm

• Each action -> a step of the algorithm

• So, each of these steps has a purpose

• Note that this algorithm is not very detailed

-> High-level algorithm

Print menu

Get option from user (+ validate input)

Based on option selected by user,

get appropriate input from user

(+ validate input)

Compute desired area

Display result 9

So, each step

could

potentially

be

implemented

as a function

For example …

Print menu

-> became the function printMenu()

#Get option from user (+ validate input)

-> became the function getSelection()

10

Step 2 – Low-level Algorithm
Print menu

Print description of program

Print menu displaying selection of shapes

Get options from user (+ validate input)

Print input instruction to user and read user input

Validate input

Based on option selected by user, get appropriate input from user (+ validate input)

If "triangle" is selected, then ask for the base and height

If "circle" is selected, then ask for the radius

if "rectangle" is selected, then ask for the width and height

if "square" is selected, then ask for one side

if "ellipse" is selected, then ask for both radii

Validate input

Compute desired area

If "triangle" is selected, then compute area = 0.5 (base * height)

If "circle" is selected, then compute area = pi * radius squared

if "rectangle" is selected, then compute area = width * height

if "square" is selected, then compute area = side squared

if "ellipse" is selected, then compute area = pi * radius1 * radius2

Display result

Print the shape, the input data and the area

11

Step 4 - Implementation

• See Area Calculator program posted on our course

web site

12

Versions to our Case Study - 1

• AreaCalculator - version 1 : Demonstrating

incremental development guideline by

implementing and testing the first two steps of our

algorithm

• AreaCalculator - version 2 : Demonstrating

incremental development guideline by

implementing the sections of our algorithm dealing

with the rectangle

• AreaCalculator - version 3 : Demonstrating

incremental development guideline by

implementing the sections of our algorithm dealing

with the square
13

Versions to our Case Study - 2

• AreaCalculator - version 4 : Demonstrating

refactoring repeated code from the functions

square() and rectangle() and encapsulating this

repeated code into their own function:

• getUserInput(whichData, shape) -> called from

square() and rectangle() to get and validate side,

width or height from user

• areaOfParallelogram(base, height) -> called from

square() and rectangle() to compute their area since

square and rectangle are both parallelograms and

therefore use the same area equation

• displayResult(theShape, area) -> called from the main

part of the program to display the result since all

shapes will have a resulting area to display
14

Versions to our Case Study - 3

• Note: Throughout the 4 versions of our

AreaCalculator, we demonstrate how to design the

interface of a function

• Function’s purpose and name

• Function’s parameter(s)

• Function’s returned value

15

AreaCalculator – Main Loop
exitProgram = 'X'

...

Main part of the program - top level (of execution)

...

As long as the user enters a valid selection ...

while selectedShape != exitProgram :

area = 0

If "triangle" is selected?

if selectedShape == "T":

deal with triangle

If "circle" is selected?

elif selectedShape == "C":

deal with circle

If "rectangle" is selected?

elif selectedShape == "R":

theShape = "rectangle"

area = rectangle()

If "square" is selected?

elif selectedShape == "S":

theShape = "square"

area = square()

If "ellipse" is selected?

elif selectedShape == "E" :

deal with ellipse

...

print("---")

16

printMenu()

called

getSelection(…)

called

displayResult(…) called

Event

loop

Way 2 : Enhancing software by
incorporating functions

17

• If the software already exist, we can

encapsulate (i.e., refactor) some of its code

fragments into functions using the following

guidelines:

• If a code fragment is made of logically related

statements, i.e., the code fragment has one well

defined purpose, put the code into a function and

replace the code fragment in the main part of the

program by a call to this function

• If a code fragment is repeated in several places in the

program, put the repeated code into a function and

replace each instance of the repeated code in the

main part of the program by a call to this function

Summary

• Developing Software that incorporates Functions

• Way 1 – the program does not exist yet

• Way 2 – the program has already been written

18

Next Lecture
• Recursion

19

