
CMPT 120: Introduction to Computing Science
and Programming 1

Turtle graphics, and

User-defined Functions

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Reminders
2

Liaqat Ali, Summer 2018.

6/27/2018

2

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
3

Liaqat Ali, Summer 2018.

6/27/2018

3

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

How to Learn in This Course?

Attend Lectures & Labs

Read / review Textbook/Slides/Notes

Reflect and ask Questions

Organize – your learning activities on weekly basis,
and finally…

Write Code, Write Code, and Write Code.
4

Liaqat Ali, Summer 2018.

6/27/2018

4

A

R

R

O

W

1. Deliverables are due by the given date and time.

2. For the course, we are using IDLE to write and run our Python code.

3. You can use the CSIL lab computers outside your lab hours.

4. Plan ahead your assignments and other deliverables. Computer crash,
network problems etc. are not acceptable excuses for delays in
deliverables.

5. You may use online Python interpreters for running and testing your
codes, such as:

https://repl.it/languages/Python3 5

Liaqat Ali, Summer 2018.

6/27/2018

5

Deliverables

1. Each lab has an assigned TA.

2. Attend your assigned lab and show your work to your TA for
the participation marks.

3. Class enrolments and lab swaps are closed now.

6

Liaqat Ali, Summer 2018.

6/27/2018

6

Labs

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and Control Structures

5. Binary encodings
6. Fundamental algorithms
7. Basics of (Functions and) Recursion (Turtle Graphics)
8. Basics of computability and complexity
9. Subject to time availability:
▫ Basics of Data File management

7

Liaqat Ali, Summer 2018.

6/27/2018

7

1. Turtle Graphics: Drawing and Animation

2. Introduction to Functions: User-defined

3. Defining and Calling a Void Function

4. Designing a Program to Use Functions

5. Passing Arguments to Functions

8

Liaqat Ali, Summer 2018.

6/27/2018

8

Today’s Topics

Graphics: Drawing and Animation Using
Turtle

9

Liaqat Ali, Summer 2018.

6/27/2018

9

1

Turtle Intro

Turtle is a Python feature that
allows you to draw and
animate graphic shapes.

Import turtle package

Create our turtle

Move forward 50 pixels

Turn right 90 degrees

Move forward 50 pixels

6/27/2018

10

Liaqat Ali, 2018

Create a Turtle

“object”

Demo and Resources

1. turtle — Turtle Documentation (Methods):
graphicshttps://docs.python.org/3.5/library/turtle.html

2. Turtle examples: https://michael0x2a.com/blog/turtle-examples
3. Turtle Programming in Python: https://www.geeksforgeeks.org/turtle-

programming-python/
4. https://michael0x2a.com/blog/turtle-examples (squares)
5. https://trinket.io/python/82fe4d3bd0 (interactive)
6. https://www.turtle.ox.ac.uk/downloads/docs/Turtle_Python_Exercises_

1-12.pdf
7. http://openbookproject.net/thinkcs/python/english3e/recursion.html

6/27/2018

11

Liaqat Ali, 2018

graphicshttps://docs.python.org/3.5/library/turtle.html
https://michael0x2a.com/blog/turtle-examples
https://michael0x2a.com/blog/turtle-examples
https://www.geeksforgeeks.org/turtle-programming-python/

Using turtle in Python

• To make use of the turtle methods and functionalities, we need to import
turtle.

• ”turtle” comes packed with the standard Python package and need not be
installed externally.

• Four steps for executing a turtle program :
1. Import the turtle module

2. Create a turtle to control (using Turtle())

3. Draw around using the turtle methods.

4. Run turtle.done().

6/27/2018

12

Liaqat Ali, 2018

Common Turtle Methods (See Documentation)
METHOD PARAMETER DESCRIPTION

Turtle() None Creates and returns a new tutrle object

forward() amount Moves the turtle forward by the specified amount

backward() amount Moves the turtle backward by the specified amount

right() angle Turns the turtle clockwise

left() angle Turns the turtle counter clockwise

penup() None Picks up the turtle’s Pen

up() None Picks up the turtle’s Pen

down() None Puts down the turtle’s Pen

color() Color name Changes the color of the turtle’s pen

fillcolor() Color name Changes the color of the turtle will use to fill a polygon

6/27/2018

13

Adapted from: Janice Regan, 2013.

graphicshttps://docs.python.org/3.5/library/turtle.html

Turtle coordinates

14

100, 100

-100, -

100

?

?

0, 0

Adapted from: Angelica Lim, 2018.

14

6/27/2018

Introduction to Functions

•Function: group of statements within a program that
perform as specific task.
▫ Usually one task of a large program.

•Functions can be executed in order to perform overall
program task.

▫ Known as divide and conquer approach

•Modularized program: Program wherein each task within
the program is in its own function.

15

6/27/2018

Liaqat Ali, 2018: Adapted from:

16

6/27/2018

• We use functions to

_________________.

• We also call it a
modular approach.

Functions: A Divide and Conquer Approach

Liaqat Ali, 2018: Adapted from:

17

Function Example
Program to add two numbers.

A user-defined function to add

def add_numbers(x, y):
sum = x + y

return sum

num1 = 5

num2 = 6

sum = add_numbers(num1, num2)

print(sum)

6/27/2018

Liaqat Ali, 2018: Adapted from:

User defined

function area

main function area

Imaginary

dividing line

18

Function Example
Calculator.
num1 = 5

num2 = 6

sum = num1 + num2

sum = num1 – num2

sum = num1 * num2

sum = num1 / num2

print(sum)

A user-defined function to add
def add_numbers(x, y):

sum = x + y
return sum

def sub_numbers(x, y):
sub = x - y
return sub

num1 = 5
num2 = 6
sum = add_numbers(num1, num2)
sum = sum_numbers(num1, num2)
print(sum, sub)

6/27/2018

Liaqat Ali, 2018: Adapted from:

Imaginary

dividing line

Benefits of Modularizing a Program with Functions

• The benefits of using functions include:
▫ Simpler code

▫ Code reuse

• write the code once and call it multiple times.

▫ Better testing and debugging.

• Can test and debug each function individually.

▫ Faster development.

▫ Easier facilitation of teamwork

• Different team members can write different functions.

19

6/27/2018

Liaqat Ali, 2018: Adapted from:

Void Functions and Value-Returning Functions

• A void function:

▫ Simply executes the statements it contains and then terminates.

• A value-returning function:

▫ Executes the statements it contains, and then it returns a value back to the
statement that called it.

• The input, int, and float functions are examples of value-returning
functions.

20

6/27/2018

Liaqat Ali, 2018: Adapted from:

Defining and Calling a Function

• Functions are given names (like we give names to variables).

▫ Function naming rules:

 Cannot use key words as a function name.

 Cannot contain spaces.

 First character must be a letter or underscore.

 All other characters must be a letter, number or underscore.

 Uppercase and lowercase characters are distinct.

21

6/27/2018

Liaqat Ali, 2018: Adapted from:

Defining and Calling a Function (cont’d.)
• Function name should be

descriptive of the task carried out
by the function.

▫ Often includes a verb

• Function definition: Specifies
what function does.

def function_name():

statement

statement

1. Function header: First line of function.
– Includes keyword def and function name,

followed by parentheses and colon.

2. Block: Set of statements that belong
together as a group.

3. Call a function to execute it.

▫ When a function is called:
 Interpreter jumps to the function and

executes statements in the block.
 Interpreter jumps back to part of

program that called the function.
 Known as function return

6/27/2018

22

Liaqat Ali, 2018: Adapted from:

Defining and Calling a Function (cont’d.)

•main function: Called when the program starts.

▫ Calls other functions when they are needed.

▫ Defines the mainline logic of the program.

23

6/27/2018

Liaqat Ali, 2018: Adapted from:

Indentation in Python

• Each block must be indented

▫ Lines in block must begin with the same number of spaces.

• Use tabs or spaces to indent lines in a block, but not both as this can
confuse the Python interpreter

• IDLE automatically indents the lines in a block

▫ Blank lines that appear in a block are ignored

24

6/27/2018

Designing a Program to Use Functions

• In a flowchart, function call shown as rectangle with vertical bars
at each side

▫ Function name written in the symbol.

▫ Typically draw separate flow chart for each function in the program

• End terminal symbol usually reads Return.

• Top-down design: technique for breaking algorithm into
functions

25

6/27/2018

Liaqat Ali, 2018: Adapted from:

Designing a Program to Use Functions (cont’d.)

• Hierarchy chart: depicts relationship between functions

▫ AKA structure chart

▫ Box for each function in the program, Lines connecting boxes illustrate
the functions called by each function

▫ Does not show steps taken inside a function

• Use input function to have program wait for user to press
enter.

26

6/27/2018

Liaqat Ali, 2018: Adapted from:

Designing a Program to Use Functions (cont’d.)

27

6/27/2018

Liaqat Ali, 2018: Adapted from:

Local Variables

• Local variable: variable that is assigned a value inside a function

▫ Belongs to the function in which it was created.

• Only statements inside that function can access it, error will occur if
another function tries to access the variable.

• Scope: the part of a program in which a variable may be accessed

▫ For local variable: function in which created.

28

6/27/2018

Liaqat Ali, 2018: Adapted from:

Local Variables (cont’d.)

• Local variable cannot be accessed by statements inside its
function which precede its creation.

• Different functions may have local variables with the same name

▫ Each function does not see the other function’s local variables, so no
confusion.

29

6/27/2018

Liaqat Ali, 2018: Adapted from:

Passing Arguments to Functions

• Argument: piece of data that is sent into a function.

▫ Function can use argument in calculations.

▫ When calling the function, the argument is placed in parentheses following
the function name.

30

6/27/2018

Liaqat Ali, 2018: Adapted from:

Passing Arguments to Functions (cont’d.)

31

6/27/2018

Liaqat Ali, 2018: Adapted from:

Passing Arguments to Functions (cont’d.)

• Parameter variable: variable that is assigned the value of an
argument when the function is called.

▫ The parameter and the argument reference the same value

▫ General format:

▫ def function_name(parameter):

▫ Scope of a parameter: The function in which the parameter is used.

32

6/27/2018

Liaqat Ali, 2018: Adapted from:

Passing Arguments to Functions (cont’d.)

33

6/27/2018

Liaqat Ali, 2018: Adapted from:

6/27/2018

34

Questions?

Copyright © 2018 by Liaqat Ali

