

# CMPT 120: Introduction to Computing Science and Programming 1

# Data Representation: 2's Compliment





Copyright © 2018, Liaqat Ali. Based on <u>CMPT 120 Study Guide</u> and <u>Think Python - How to Think Like a Computer Scientist</u>, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.

## Reminders

Liaqat Ali, Summer 2018.

### **One-Stop Access To Course Information**

Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline
- Exam Schedule
- Python Info
- CourSys/Canvas link

- Learning Outcomes
- Office Hours
- Textbook links
- and more...

- Grading Scheme
- Lab/Tutorial Info
- Assignments
- Canvas: Discussions forum <a href="https://canvas.sfu.ca/courses/39187">https://canvas.sfu.ca/courses/39187</a>
- CourSys: Assignments submission, grades www.coursys.sfu.ca

#### **How to Learn in This Course?**





Reflect and ask Questions

Organize — your learning activities on weekly basis, and finally...

Write Code, Write Code, and Write Code.



#### **Deliverables**

- 1. Deliverables are due by the given date and time.
- 2. For the course, we are using IDLE to write and run our Python code.
- 3. You can use the CSIL lab computers outside your lab hours.
- 4. Plan ahead your assignments and other deliverables. Computer crash, network problems etc. are not acceptable excuses for delays in deliverables.
- 5. You may use online Python interpreters for running and testing your codes, such as:

https://repl.it/languages/Python3

#### Labs

- 1. Each lab has an assigned TA.
- 2. Attend your assigned lab and show your work to your TA for the participation marks.
- 3. Class enrolments and lab swaps are closed now.

#### **Course Topics**

- 1. General introduction
- 2. Algorithms, flow charts and pseudocode
- 3. Procedural programming in Python
- 4. Data types and Control Structures
- 5. Fundamental algorithms
- 6. **Binary encodings**
- 7. Basics of computability and complexity
- 8. Basics of Recursion
- 9. Subject to time availability:
  - Basics of Data File management

## **Today's Topics**

## Data Representation (Binary Encoding)

- 1. Unsigned Integer
- 2. Signed Integer
- 3. Binary Addition
- 4. 1's Compliment Representation
- 5. 2's Compliment Representation

1

# Data Representation: 2's Compliment

Liagat Ali, Summer 2018.

#### Two's Complement Signed Integer Representation

- Integer is represented by a string of binary digits.
  - Representation is in 2's compliment form.
  - Right most bit is used for sing.
  - Remaining bits represent the value.

Sign bit N-1 Binary Digits: 2's Compliment

- Decimal to <u>2's Compliment</u> form:
- For a Positive Number:
  - 1. First bit is 0.
  - 2. Convert the number to its binary equivalent.
- +7 is represented as:
- + 13 is represented as: \_\_\_\_\_

- For a Negative Number:
  - 1. Convert the number to its binary equivalent.
  - 2. Flip the bits
  - 3. Add 1.
- - 7 would be represented as:
  - 1. Convert to binary: \_\_\_\_\_
  - 2. Flip the bits:
  - 3. Add 1.

- 1 = \_\_\_\_\_
- - 13 would be represented as:
  - 1. Convert to binary: \_\_\_\_\_
  - 2. Flip the bits:
  - 3. Add 1.

1 = \_\_\_\_\_

#### Two's Complement Signed Integer Representation - 2

- 2's Compliment to Decimal:
- If first bit is 0, then:
  - 1. The number is positive.
  - 2. Simply, convert the binary number to its decimal equivalent.
- 0001 0111 is 2's compliment representation of: + = +
- If first bit is 1, then:
  - The number is negative.
  - Flip all the bits. So,1011 0001 becomes
  - Add 1.

- 4004444
- Convert to decimal:0100 1111 = \_\_\_\_\_ = \_\_\_\_ = \_\_\_\_ = \_\_\_\_
- So 1011001 represents -\_\_\_\_\_

#### Two's Complement Signed Integer Representation - 3

| • 2 | 's Co | mplir | nent | to D | ecima |  |
|-----|-------|-------|------|------|-------|--|
|-----|-------|-------|------|------|-------|--|

- **0000 0000** is a 2's compliment representation of which decimal number?
  - 1. First bit is 0, so this is a representation of a positive number.
  - 2. Convert the bits to the decimal equivalent. \_\_\_\_ = \_\_\_\_
- 1000 0000 is a 2's compliment representation of which decimal number?
  - 1. First bit is 1, so this is a representation of a negative number.
  - 2. Flip all the bits. So, 1000 0000 becomes \_\_\_\_\_
  - 3. Add 1.
  - 4. Convert to decimal: \_\_\_\_\_ = \_\_\_ = \_\_\_
  - 5. So 1000 000 represents \_\_\_\_\_
- So, in 2's compliment, we no longer get two representations of 0.

## More Examples: Two's Complement to Decimal



-85

| 1                     | 0                     | 1                     | 0  | 1                     | 0                     | 1              | 1  |
|-----------------------|-----------------------|-----------------------|----|-----------------------|-----------------------|----------------|----|
| <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | 20 |
|                       |                       |                       |    |                       |                       |                |    |
|                       |                       |                       |    |                       |                       |                |    |
| -                     |                       |                       |    |                       |                       |                |    |

**35** 

| 0                     | 0                     | 1                     | 0  | 0                     | 0              | 1              | 1                     |
|-----------------------|-----------------------|-----------------------|----|-----------------------|----------------|----------------|-----------------------|
| <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> |
|                       |                       |                       |    |                       |                |                |                       |
|                       |                       |                       |    |                       |                |                |                       |

## More Examples: Two's Complement to Decimal - 2



**79** 

-52

 27
 26
 25
 24
 23
 22
 21
 20

## More Examples: Decimal to 2's Complement

- -72 (number < 0)
  - Express 72 in 8 bit binary
    - 64 + 8
    - 01001000
  - Flip the bits:
    - 10110111
  - Add 1:
    - 10111000

- 35 (number > 0)
  - Express 35 in 8 bit binary
    - 32+2+1
    - 00100011

#### Your turn

- Which number is represented by the following 2's compliment pattern?
- 1. 10101010
- 2. 11011010

Represent in two's complement form.

- 1. 120
- 2. -59

### **Compare Representations**

| Bit Pattern | Decimal Value in Unsigned Representation | Decimal Value in Signed Representation | Decimal Value in 1's Comp Rep. | Decimal Value in 2's Comp Representation |
|-------------|------------------------------------------|----------------------------------------|--------------------------------|------------------------------------------|
| 0000 0000   | 0                                        | + <mark>0</mark>                       | <del>+0</del>                  | <u>O</u>                                 |
| 0000 0001   | 1                                        | 1                                      | 1                              | 1                                        |
| 0000 0010   | 2                                        | 2                                      | 2                              | 2                                        |
| 0111 1110   | 126                                      | 126                                    | 126                            | 126                                      |
| 0111 1111   | 127                                      | 127                                    | 127                            | 127                                      |
| 1000 0000   | 128                                      | <mark>-0</mark>                        | <b>-127</b>                    | <b>-128</b>                              |
| 1000 0001   | 129                                      | -1                                     | -126                           | -127                                     |
| 1000 0010   | 130                                      | -2                                     | -125                           | -126                                     |
| 1111 1110   | 254                                      | -126                                   | -1                             | <b>-2</b>                                |
| 1111 1111   | 255                                      | -127                                   | <mark>-0</mark>                | -1                                       |

Liaqat Ali, 2018

### Twos Complement Addition

```
      0
      0
      1
      1
      1
      0
      0
      0
      64

      0
      1
      1
      1
      1
      0
      0
      0
      +120

      0
      0
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

## **Twos Complement Addition**



#### Twos Complement Overflow

```
0 1 1 0 1 1 1 0 110
0 1 0 1 1 0 1 1 91 (sum exceeds +127)
1 1 0 0 1 0 1 -55

1 0 0 1 1 1 1 0 -96
1 1 0 0 0 1 0 1 -59 (sum exceeds -128)
0 1 1 0 0 0 1 1 +99
```

### Overflow: 2's complement

- If the sum of two positive numbers is negative, overflow has occurred
- If the sum of two negative numbers is positive, overflow has occurred
- Overflow does not occur adding a positive number and a negative number.
- Overflow happens when there is carry over into the sign bit.

## 2's Complement

- Multiplication is performed by repeated addition in 2's complement form.
- Division is performed by repeated subtraction in 2's complement form.

### Your Turn Again

• -66 : Represent as 2's compliment.

• 32 : Represent as 2's compliment.

• 48 – 64 : Perform 2's compliment addition.

• 57 + 22 : Perform 2's compliment addition.

#### Class Participation: Canvas Post

 How would computer add the following two numbers using twos compliment?

+65

<u>-23</u>

#### Required:

- 1. Write +65 as a 2's Compliment number.
- 2. Write -23 as a 2's Compliment number.
- 3. Add both the numbers
- 4. Post your solution on **Canvas** by **tonight**.

