CMPT 120: Introduction to Computing Science and Programming 1

Data Representation: 2's Compliment

[^0]
Reminders

Liaqat Ali, Summer 2018.

One-Stop Access To Course Information

- Course website: One-stop access to all course information. http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
- Course Outline
- Exam Schedule
- Python Info
- CourSys/Canvas link
- Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187
- CourSys: Assignments submission, grades - www.coursys.sfu.ca

How to Learn in This Course?

A Attend Lectures \& Labs
R Read/review Textbook/Slides/Notes
R Reflect and ask Questions
O Organize - your learning activities on weekly basis, and finally...
W Write Code, Write Code, and Write Code.

Deliverables

1. Deliverables are due by the given date and time.
2. For the course, we are using IDLE to write and run our Python code.
3. You can use the CSIL lab computers outside your lab hours.
4. Plan ahead your assignments and other deliverables. Computer crash, network problems etc. are not acceptable excuses for delays in deliverables.
5. You may use online Python interpreters for running and testing your codes, such as:

https://repl.it/languages/Python3

Labs

1. Each lab has an assigned TA.
2. Attend your assigned lab and show your work to your TA for the participation marks.
3. Class enrolments and lab swaps are closed now.

Course Topics

1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and Control Structures
5. Fundamental algorithms
6. Binary encodings
7. Basics of computability and complexity
8. Basics of Recursion
9. Subject to time availability:

- Basics of Data File management

Today's Topics

-Data Representation (Binary Encoding)

1. Unsigned Integer
2. Signed Integer
3. Binary Addition
4. 1's Compliment Representation
5. 2's Compliment Representation

Data Representation: 2's Compliment

Two's Complement Signed Integer Representation

- Integer is represented by a string of binary digits.
- Representation is in 2's compliment form.
- Right most bit is used for sing.
- Remaining bits represent the value.

Sign bit	N-1 Binary Digits: 2's Compliment

- Decimal to 2 's Compliment form:
- For a Positive Number:

1. First bit is 0 .
2. Convert the number to its binary equivalent.

- + 7 is represented as:
-+13 is represented as:
\qquad

Liaqat Ali, 2018

- For a Negative Number:

1. Convert the number to its binary equivalent.
2. Flip the bits
3. Add 1.

- - 7 would be represented as:

1. Convert to binary: \qquad
2. Flip the bits:
3. Add 1.
$1=$ \qquad

- -13 would be represented as:

1. Convert to binary: \qquad
2. Flip the bits:
3. Add 1.
$1=$ \qquad

Two's Complement Signed Integer Representation - 2

- 2's Compliment to Decimal:
- If first bit is $\mathbf{0}$, then:

1. The number is positive.
2. Simply, convert the binary number to its decimal equivalent.

- 00010111 is 2's compliment representation of: + \qquad = + \qquad
- If first bit is 1 , then:
- The number is negative.
- Flip all the bits. So, 10110001 becomes
- Add 1.
- Convert to decimal: 01001111 = \qquad $=$ \qquad $=$ \qquad
- So 1011001 represents -

Two's Complement Signed Integer Representation - 3

- 2's Compliment to Decimal:
- $\mathbf{0 0 0 0} \mathbf{0 0 0 0}$ is a 2's compliment representation of which decimal number?

1. First bit is 0 , so this is a representation of a positive number.
2. Convert the bits to the decimal equivalent. \qquad $=$ \qquad

- $\mathbf{1 0 0 0} \mathbf{0 0 0 0}$ is a 2's compliment representation of which decimal number?

1. First bit is 1 , so this is a representation of a negative number.
2. Flip all the bits.

So, 10000000 becomes \qquad
3. Add 1.

1 = \qquad
4. Convert to decimal: \qquad = \qquad
5. So 1000000 represents

- So, in 2's compliment, we no longer get two representations of 0 .

More Examples: Two's Complement to Decimal

Adapted from: Janice Regan, 2013.

More Examples: Two’s Complement to Decimal - 2

Remember if first digit is 1 flip bits then add 1
-52

1	1	0	0	1	1	0	0
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
-							

79

0	1	0	0	1	1	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

Adapted from: Janice Regan, 2013.

More Examples: Decimal to 2's Complement

- -72 (number < 0)
- Express 72 in 8 bit binary
- 64 + 8
- 01001000
- Flip the bits:
- 10110111
- Add 1:
- 10111000
-35 (number >0)
- Express 35 in 8 bit binary
- 32+2+1
- 00100011

Your turn

- Which number is represented by the following 2's compliment pattern?

1. 10101010
2. 11011010

Represent in two's complement form.

1. 120
2. -59

Adapted from: Janice Regan, 2013.

Compare Representations

Bit Pattern	Decimal Value in Unsigned Representation	Decimal Value in Signed Representation	Decimal Value in 1's Comp Rep.	Decimal Value in 2's Comp Representation
00000000	0	+0	+0	0
00000001	1	1	1	1
00000010	2	2	2	2
01111110	126	126	126	126
01111111	127	127	127	127
10000000	128	-0	-127	-128
10000001	129	-1	-126	-127
10000010	130	-2	-125	-126
11111110	254	-126	-1	-2
11111111	255	-127	-0	-1

Liaqat Ali, 2018

Twos Complement Addition

0	0	1	1	1	0	0	0	56
0	1	0	0	0	0	0	0	64
0	1	1	1	1	0	0	0	+120
0	0	1	1	1	0	1	1	59
1	0	0	0	0	1	1	1	-121
1	1	0	0	0	0	1	0	-62

Adapted from: Janice Regan, 2013.

Twos Complement Addition

Throw away	0	1	1	0	1	1	1	0	110
Throw away	1	0	1	1	1	0	1	1	-37
\vdots	1	1	0	1	1	0	1	1	73
1	1	0	0	1	0	0	1	-69	
1	1	0	0	1	0	1	0	1	-43

Adapted from: Janice Regan, 2013.

Twos Complement Overflow

0	1	1	0	1	1	1	0	110	
0	1	0	1	1	0	1	1	91	(sum exceeds +127)
1	1	0	0	1	0	0	1	-55	
1	0	0	1	1	1	1	0	-96	
1	1	0	0	0	1	0	1	-59	(sum exceeds -128)
0	1	1	0	0	0	1	1	+99	

Adapted from: Janice Regan, 2013.

Overflow: 2's complement

- If the sum of two positive numbers is negative, overflow has occurred
- If the sum of two negative numbers is positive, overflow has occurred
- Overflow does not occur adding a positive number and a negative number.
- Overflow happens when there is carry over into the sign bit.

2's Complement

- Multiplication is performed by repeated addition in 2's complement form .
- Division is performed by repeated subtraction in 2's complement form.

Your Turn Again

- -66 : Represent as 2's compliment.
- 32 : Represent as 2's compliment.
- 48-64 : Perform 2's compliment addition.
- $57+22$: Perform 2's compliment addition.

Class Participation: Canvas Post

- How would computer add the following two numbers using twos compliment?
+65
-23
Required:

1. Write +65 as a 2's Compliment number.
2. Write -23 as a 2's Compliment number.
3. Add both the numbers
4. Post your solution on Canvas by tonight.

9

Questions?

[^0]: Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
 Copyrights © to respective instructors. Icons copyright © to their respective owners.

