

CMPT 120: Introduction to Computing Science and Programming 1

Binary Encoding / Representation

Copyright © 2018, Liaqat Ali. Based on <u>CMPT 120 Study Guide</u> and <u>Think Python - How to Think Like a Computer Scientist</u>, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.

Reminders

Liaqat Ali, Summer 2018.

One-Stop Access To Course Information

Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline
- Exam Schedule
- Python Info
- CourSys/Canvas link

- Learning Outcomes
- Office Hours
- Textbook links
- and more...

- Grading Scheme
- Lab/Tutorial Info
- Assignments
- Canvas: Discussions forum https://canvas.sfu.ca/courses/39187
- CourSys: Assignments submission, grades www.coursys.sfu.ca

How to Learn in This Course?

- A Attend Lectures & Labs
- R Read / review Textbook/Slides/Notes
- Reflect and ask Questions
- Organize your learning activities on weekly basis, and finally...
- Write Code, Write Code, and Write Code.

Deliverables

- 1. Deliverables are due by the given date and time.
- 2. For the course, we are using IDLE to write and run our Python code.
- 3. You can use the CSIL lab computers outside your lab hours.
- 4. Plan ahead your assignments and other deliverables. Computer crash, network problems etc. are not acceptable excuses for delays in deliverables.
- 5. You may use online Python interpreters for running and testing your codes, such as:

https://repl.it/languages/Python3

Labs

- 1. Each lab has an assigned TA.
- 2. Attend your assigned lab and show your work to your TA for the participation marks.
- 3. Class enrolments and lab swaps are closed now.

Course Topics

- 1. General introduction
- 2. Algorithms, flow charts and pseudocode
- 3. Procedural programming in Python
- 4. Data types and Control Structures
- 5. Fundamental algorithms
- 6. **Binary encodings**
- 7. Basics of computability and complexity
- 8. Basics of Recursion
- 9. Subject to time availability:
 - Basics of Data File management

Today's Topics

1. Data Representation (Binary Encoding)

- ASCII
- Unicode
- Storage Units
- Binary Addition

1

Data Representation

Liaqat Ali, Summer 2018.

Number Systems: Representation and Position Values

- In our common day life we use the Decimal Number System, only.
- We write **11**:
 - it is understood that we talking about the decimal number system.
 - We know it represents **Eleven**.
- But, what it **11** is a binary number?
 - It then would mean 3.
- How can we can distingue number systems?
- One way is t use notation: Number_{base}

- So, write decimal **11** (base 10) as: **11**₁₀
 - 11₁₀ thus represents Eleven.
 - Base 10 position values: **10² 10¹ 10⁰**
- We write 11 in base 2 as: 112
 - 11, in Binary thus represents three.
 - Base 2 position values:
- 2² 2¹ 2⁰
- Similarly, we can write 11 in base 16 (hexadecimal) as: 11₁₆
 - 11₁₆ in hexadecimal means **Seventeen**.
 - Base 16 position values: **16² 16¹ 16⁰**

Storage Units

- Bit: storage to represent a binary 0 or 1.
- Byte: a group of 8-bits.
- More bigger storage units (with approximation, as shown in Study Guide):

Prefix	Symbol	Factor
(no prefix)		$2^0 = 1$
kilo-	k	$2^{10} = 1024 \approx 10^3$
mega-	M	$2^{20} = 1048576 \approx 10^6$
giga-	G	$2^{30} = 1073741824 \approx 10^9$
tera-	T	$2^{40} = 1099511627776 \approx 10^{12}$

- Example, "12 megabytes" is: 12 × 2²⁰ bytes
- = **12,582,912** bytes =>

12582912 × **8** bits = **100,663,296** bits .

• More specifically:

Multiples of bytes V-T-E							
Decimal		Binary					
Value		Metric	Value		IEC	,	JEDEC
1000	kΒ	kilobyte	1024	KiB	kibibyte	KB	kilobyte
1000 ²	МВ	megabyte	1024 ²	MiB	mebibyte	МВ	megabyte
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte		-
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		-
1000 ⁶	ЕΒ	exabyte	1024 ⁶	EiB	exbibyte		-
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		-
1000 ⁸	YΒ	yottabyte	1024 ⁸	YiB	yobibyte		-
Orders of magnitude of data							

Liaqat Ali, Summer 2018.

Quiz 1

