

CMPT 120: Introduction to Computing Science and Programming 1

Binary Encoding / Representation

Copyright © 2018, Liaqat Ali. Based on <u>CMPT 120 Study Guide</u> and <u>Think Python - How to Think Like a Computer Scientist</u>, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.

Reminders

One-Stop Access To Course Information

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline
- Exam Schedule
- Python Info
- <u>CourSys/Canvas</u> link

SFU SIMON FRASER UNIVERSITY

- Learning Outcomes
- Office Hours
- Textbook links
- and more...

- Grading Scheme
- Lab/Tutorial Info
- Assignments
- Canvas: Discussions forum <u>https://canvas.sfu.ca/courses/39187</u>
- <u>CourSys</u>: Assignments submission, grades <u>www.coursys.sfu.ca</u>

How to Learn in This Course?

- A Attend Lectures & Labs
- **R Read** / review Textbook/Slides/Notes
- **Reflect** and ask Questions
- Organize your learning activities on weekly basis, and finally...
- W Write Code, Write Code, and Write Code.

Deliverables

- 1. Deliverables are due by the given date and time.
- 2. For the course, we are using IDLE to write and run our Python code.
- 3. You can use the CSIL lab computers outside your lab hours.
- 4. Plan ahead your assignments and other deliverables. Computer crash, network problems etc. are not acceptable excuses for delays in deliverables.
- 5. You may use online Python interpreters for running and testing your codes, such as:

https://repl.it/languages/Python3

Liaqat Ali, Summer 2018.

6/17/2018

Labs

- 1. Each lab has an assigned TA.
- 2. Attend your assigned lab and show your work to your TA for the participation marks.
- 3. Class enrolments and lab swaps are closed now.

6/17/2018

Course Topics

- **1.** General introduction
- 2. Algorithms, flow charts and pseudocode
- **3.** Procedural programming in Python
- 4. Data types and Control Structures
- 5. Fundamental algorithms
- 6. **Binary encodings**
- 7. Basics of computability and complexity
- 8. Basics of Recursion
- 9. Subject to time availability:
 - Basics of Data File management

Today's Topics

1. Data Representation (Binary Encoding)

- ASCII
- Unicode
- 2. Data Structures:
 - int, float, Boolean
 - Lists: Methods & Functions:
 - Tuples: Methods & Functions
- **3.** User Defined Functions

6/17/2018

Data Representation

Binary Data Representation

- Data inside computer is **not represented** the same way as we represent numbers and letters in English or native language. For example:
 - We represent quantities using symbols (digits) 0, 1, 3,... and 9.
 - We can write names using English letters A, B, C,...Z or a, b, c,...z
 - So, we represent a quantity **six** by using the symbol 6.
 - Using English alphabets, we can represent a street name as: **Dawson Street**.
- Problem!!!
- Computer don't use (recognize) the symbols 0,1,2..9 or alphabets a, b, c,...z
- Because, computers use a completely **different** language to represent numbers or letters (or data).
- We call it machine language. (Or, binary language or representation.)

Binary Data Representation - 2

- The **binary language** consists of two symbols only: 0 and 1
- That means, every thing in computer **MUST** be represented using the symbols **0** and **1**, only
- So, the quantity six must be represented using a commination of Os and Is. (Binary code)
- The name Dawson Street must also be represented using a commination of 0s and 1s.
- Let's create **our own binary codes** to represent letters A, B, C, ...Z using a combination of **0s and 1s**.

6/18/2018

Binary Codes (Our Own Codes)

6/18/2018

Binary Codes: ASCII

- **ASCII:** American Standard Code for Information Interchange. (256 codes.)
- Used in computers to represent characters since 1963.
- ASCII uses 8-bits to represent one character of English language.

Letter	ASC	ASCII Binary Code									
а											
b											
С											
d	0	1	1	0	0	1	0	0			
e	0	1	1	0	0	1	0	1			
Т	0	1	1	0	0	1	1	0			

- Space required to represent a single binary 0 or 1 is called _____.
- Space required to represent 8-bits is called a _____.
- See a complete list of <u>AscII</u> codes here: www.ascii-code.com

Number Systems

SIMON FRASER UNIVERSITY

SFL

- Binary Number System: Uses two unique symbols to represents numbers or data. (0 and 1).
- Decimal system: Use ten unique symbols to represent numbers. (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).
- Octal system: Use eight unique symbols to represent numbers. (0, 1, 2, 3, 4, 5, 6, and 7).
- Hexa-decimal system: Use sixteen unique symbols to represent numbers. (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E and F).

- We can convert between number systems.
 - We can convert a decimal number representation into a binary, octal, or hexa-decimal representation.
 - We can convert a binary number representation into a decimal representation, or others.
 - A binary 1 at right most position means 1.
 - A binary 1 at next positions means 2, 4, 8, 16, 32, 64 and 128 respectively.

6/18/2018

Examples

1	0	1	0	1	0	1	1	= 171
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
128	64	32	16	8	4	2	1	
0	0	1	0	0	0	1	1	= 35
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
128	64	32	16	8	4	2	1	

Converting from Decimal to binary

• 111

- 128 too large from 111,
 - so there are **zero** 128 in 111.
- 111 64 = 47
 - There is **one** 64 in 111, remainder 47.)

16

ASCII: Decimal Equivalent

Letter	ASCII Binary Code									
^	128	64	32	16	8	4	2	1		
A	0	1	0	0	0	0	0	1		
D	0	1	0	0	0	0	1	0		
C	0	1	0	0	0	0	1	1		
D	0	1	0	0	0	1	0	0		
E	0	1	0	0	0	1	0	1		
F	0	1	0	0	0	1	1	0		

When we use Boolean expression ('a' < 'A'), computer would compare the ASCII value of a (which is 97) with the value of ASCII value of A (which is 65).

<u>Letter</u>	ASCII Binary Code									
2	128	64	32	16	8	4	2	1		
d h	0	1	1	0	0	0	0	1		
	0	1	1	0	0	0	1	0		
d d	0	1	1	0	0	0	1	1		
u	0	1	1	0	0	1	0	0		
f f	0	1	1	0	0	1	0	1		
1	0	1	1	0	0	1	1	0		

- 'B' <= 'b'
- 'cd' <= 'ab'
- 'xyz' > 'XYZ'

Unicode Data Representation

- With ASCII we represent at the most of 256 unique characters.
- Problem!!!
- Unicode coding scheme was devised to encode more characters such as characters from other world languages.
- Unicode now contains over 137,000 unique characters covering 146 modern and historic scripts. (Wikipedia)

6/17/2018

19

Copyright © 2018 by Liaqat Ali