
CMPT 120: Introduction to Computing Science
and Programming 1

Control Structures: Loops

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Reminders
2

Liaqat Ali, Summer 2018.

6/13/2018

2

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
3

Liaqat Ali, Summer 2018.

6/13/2018

3

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

How to Learn in This Course?

Attend Lectures & Labs

Read / review Textbook/Slides/Notes

Reflect and ask Questions

Organize – your learning activities on weekly basis,
and finally…

Write Code, Write Code, and Write Code.
4

Liaqat Ali, Summer 2018.

6/13/2018

4

A

R

R

O

W

1. Deliverables are due by the given date and time.

2. For the course, we are using IDLE to write and run our Python code.

3. You can use the CSIL lab computers outside your lab hours.

4. Plan ahead your assignments and other deliverables. Computer crash,
network problems etc. are not acceptable excuses for delays in
deliverables.

5. You may use online Python interpreters for running and testing your
codes, such as:

https://repl.it/languages/Python3 5

Liaqat Ali, Summer 2018.

6/13/2018

5

Deliverables

1. Each lab has an assigned TA.

2. Attend your assigned lab and show your work to your TA for
the participation marks.

3. Class enrolments and lab swaps are closed now.

6

Liaqat Ali, Summer 2018.

6/13/2018

6

Labs

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python

4. Data types and Control Structures
5. Functions and Fundamental algorithms
6. Binary encodings
7. Basics of computability and complexity
8. Basics of Recursion
9. Subject to time availability:
▫ Basics of Data File management 7

Liaqat Ali, Summer 2018.

6/13/2018

7

1. Introduction to Loops: Repetition Structures
a. The for Loop: a Count-Controlled Loop
b. continue & break
c. The while Loop: a Condition-Controlled Loop

2. Sentinels
3. Input Validation Loops
4. Nested Loops

8

Liaqat Ali, Summer 2018.

6/13/2018

8

Today’s Topics

Introduction to Loops: Repetition
Structures - while

9

Liaqat Ali, Summer 2018.

6/13/2018

9

1

This program calculates sales commissions.

Create a variable to control the loop.

keep_going = 'y'

Calculate a series of commissions.

while keep_going == 'y':
Get a salesperson's sales and commission rate.

sales = float(input('Enter the amount of sales: '))
comm_rate = float(input('Enter the commission rate: '))

Calculate the commission.

commission = sales * comm_rate

Display the commission.

print('The commission is {}$’.format(commission)

See if the user wants to do another one.

keep_going = input('Do you want to continue (Enter y for yes): ')

6/15/2018

10

Liaqat Ali, Summer 2018. Adapted:

10

Sentinels
• Sentinel: special value used to mark end of a sequence of items or loop.
▫ When program reaches a sentinel, it knows that the end of the sequence of

items was reached, and the loop terminates.
▫ Must be distinctive enough so as not to be mistaken for a regular value in the

sequence. Example: We used -99 as our sentinel value to end loop below.
user_input = 1
sum = 0
while user_input != -99:

user_input = int(input("Enter your number or -99 to end."))
sum = sum + user_input

print(“The sum of numbers is: {}”.format(sum))

Input Validation Loops

• Computer cannot tell the difference between good data and bad data
▫ If user provides bad input, program will produce bad output
▫ GIGO: garbage in, garbage out
▫ It is important to design program such that bad input is never accepted.

• Input validation: inspecting input before it is processed by the program
▫ If input is invalid, prompt user to enter correct data
▫ Commonly accomplished using a while loop which repeats as long as the

input is bad.
• If input is bad, display error message and receive another set of data
• If input is good, continue to process the input.

Input Validation Loops - 2

Input Validation Loops - 2
This program calculates retail prices.

mark_up = 2.5 # The markup percentage

another = 'y' # Variable to control the loop.

Process one or more items.

while another == 'y' or another == 'Y':

Get the item's wholesale cost.

cost = float(input("Enter the item's " + \

"cost: "))

Validate the wholesale cost.
while wholesale < 0:

print('ERROR: the cost cannot be negative.')
cost = float(input('Enter the correct cost:'))

Calculate the retail price.
retail = cost * mark_up

Display the retail price.
print('Retail price: $', format(retail, ',.2f'))

Do this again?
another = input('Do you have another item? ' + \

'(Enter y for yes): ')

Nested Loops
• Nested loop: loop that is contained inside another loop
▫ Example: analog clock works like a nested loop

• Hours hand moves once for every twelve movements of the minutes hand:
for each iteration of the “hours,” do twelve iterations of “minutes”

• Seconds hand moves 60 times for each movement of the minutes hand: for
each iteration of “minutes,” do 60 iterations of “seconds”

• Key points about nested loops:
▫ Inner loop goes through all of its iterations for each iteration of outer loop
▫ Inner loops complete their iterations faster than outer loops
▫ Total number of iterations in nested loop:

number_iterations_inner x number_iterations_outer

6/13/2018

16

Questions?

Copyright © 2018 by Liaqat Ali

