
CMPT 120: Introduction to Computing Science
and Programming 1

Strings, and

Control Structures: if-elif-else

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Reminders
2

Liaqat Ali, Summer 2018.

6/5/2018

2

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
3

Liaqat Ali, Summer 2018.

6/5/2018

3

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

How to Learn in This Course?

Attend Lectures & Labs

Read / review Textbook/Slides/Notes

Reflect and ask Questions

Organize – your learning activities on weekly basis,
and finally…

Write Code, Write Code, and Write Code.
4

Liaqat Ali, Summer 2018.

6/5/2018

4

A

R

R

O

W

1. Deliverables are due by the given date and time.

2. For the course, we are using IDLE to write and run our Python code.

3. You can use the CSIL lab computers outside your lab hours.

4. Plan ahead your assignments and other deliverables. Computer crash,
network problems etc. are not acceptable excuses for delays in
deliverables.

5. You may use online Python interpreters for running and testing your
codes, such as:

https://repl.it/languages/Python3 5

Liaqat Ali, Summer 2018.

6/5/2018

5

Deliverables

1. Each lab has an assigned TA.

2. Attend your assigned lab and show your work to your TA for
the participation marks.

3. Class enrolments and lab swaps are closed now.

6

Liaqat Ali, Summer 2018.

6/5/2018

6

Labs

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python

4. Data types and Control Structures
5. Fundamental algorithms
6. Binary encodings
7. Basics of computability and complexity
8. Basics of Recursion
9. Subject to time availability:
▫ Basics of Data File management 7

Liaqat Ali, Summer 2018.

6/5/2018

7

1. Strings
• String Special Operators

 + , *, %
 [], [:], in, not in

• String Formatting Symbols
▫ %, s, d, m.n d
▫ More symbols

• String Methods

2. Control Structures
• If statement
• Loop 8

Liaqat Ali, Summer 2018.

6/5/2018

8

Today’s Topics

Strings
9

Liaqat Ali, Summer 2018.

6/5/2018

9

1

>>> word = “Welcome!”

• [] is called slice operator. We use to get a character from a string for given
index. The index of first character is 0.

▫ Example: >>> print(word[0])

>>> W

• [:] is called range slice operator. We use to get characters from a string for
given index range.

▫ Example: >>> print(word[3 : 7]) # The from value: inclusive, to value: exclusive

>>> come

6/5/2018

10

Liaqat Ali, Summer 2018.

10

String Special Operators

>>> word = “Welcome!”

• in is called membership operator. It returns true if a character exists in the
given string.

▫ Example: >>> “e” in word >>> “k” in word

>>> True >>> False

• not in is called membership operator. It returns true if a character does not
exist in the given string.

▫ Example: >>> “e” not in word >>> “k” not in word

>>> False >>> True

6/5/2018

11

Liaqat Ali, Summer 2018.

11

String Operations 2

>>> course = “CMPT 120”
>>> print(“Welcome to %s” %course)
• %s format specifier is a placeholder for a string value.
• %c format specifier is a placeholder for a character.
• %d or %i format specifier is a placeholder for a signed decimal integer.
• %u format specifier is a placeholder for a unsigned decimal integer.
• %f format specifier is a placeholder for a floating point real number.
• %o format specifier is a placeholder for a octal integer.
• %x format specifier is a placeholder for a hexadecimal integer.
• %e format specifier is a placeholder for an exponent notation.

6/5/2018

12

Liaqat Ali, Summer 2018.

12

String Formatting Symbols

>>> course = “CMPT 120”

>>> print(“Welcome to { }.”.format(course))

Welcome to CMPT 120:

>>> course = “CMPT 120”

>>> mark = 87

print(“Your marks in { } is { }.”.format(course, mark))

Your mark in CMPT 120 is 87.

6/5/2018

13

Liaqat Ali, Summer 2018.

13

String Formatting Symbols – New Way {}

• .upper(): Convert a string to uppercase letters.

▫ Example: >>> “abc”.upper() ➔ “ABC”

• .strip(): Removes leading and trailing spaces from a string.

▫ Example: >>> “ abc ”.strip() ➔ “abc”

• .isdigit(): Returns true if string contains only digits and false otherwise.

▫ Example: >>> “abc”.isdigit() ➔ False

• .isnumeric(): Returns true if a string contains only numeric characters
and false otherwise.
▫ Example: >>> “abc ”.isnumeric() ➔ False

6/5/2018

14

Liaqat Ali, Summer 2018.

14

String Methods

• .lower(): Convert a string to lowercase letters.

• .lstrip(): Removes leading spaces from a string.

• .isspace(): Returns true if string contains only whitespace characters.

• .isalpha(): Returns true if string has at least 1 character and all
characters are alphabetic and false otherwise.

• .capitalize(): Capitalizes first letter of string.

• len(string): Returns the length of the string.

6/5/2018

15

Liaqat Ali, Summer 2018.

15

String Methods 2

Control Structures
16

Liaqat Ali, Summer 2018.

6/5/2018

16

2

Instructions in a
program are executed in
a sequential order from
top to bottom, generally.

mid=input()
final = input()
sum = mid + final
print(sum)

• Sequential Structure

6/5/2018

17

Liaqat Ali, Summer 2018.

17

Program Execution: Control Structures

Sometimes, we need to
skip some instructions.
mid=input()
final = input()
sum = mid + final
if sum<50 :

print(“Fail”)
else:

print(“Pass”)
• Decision Structure:

Branching

Sometimes, we need
to repeat instructions.
sum = 0
n = 1
while (n <=100):

sum=sum+n
n=n+1

print(sum)

• Decision Structure:
Looping

• Control Structure: It is a logical design which refers to the order in
which statements in computer programs will be executed.

1. Sequence Structure: An order where a set of statements is
executed sequentially.

2. Decision Structure: An order where a set of instructions is
executed only if a condition exists.

a. Branching

b. Looping

6/5/2018

18

Liaqat Ali, Summer 2018.

18

Control Structures

Sequential Structure

6/5/2018

19

Liaqat Ali, Summer 2018.

19

Control Structures: Flowcharts

Decision Structure:
Branching

Decision Structure:
Looping

• Branching: It alters the flow of program execution by making a
selection or choice.

1. if
2. if-else
3. If-elif-else (A decision structure nested inside another decision structure)

• Looping: It alters the flow of program execution by repetition of a
particular block of statement(s).

1. for-loop
2. while-loop

6/5/2018

20

Liaqat Ali, Summer 2018.

20

Decision Structures

The if Decision Structures
21

Liaqat Ali, Summer 2018.

6/5/2018

21

3

• A simple if statement provides a single
alternative decision structure.

▫ It provides only one alternative path of
execution.

▫ If condition is not true, exit the structure.

6/5/2018

22

Liaqat Ali, Summer 2018.

22

The if Statement: A Simple Decision Structure

If n < 0

Print
Error

true

false

:

• Python syntax:
if condition:

Statement

Statement

• First line known as the if clause.
• It includes the keyword if followed by condition.
• The condition can be true or false.
• When the if statement executes, the condition is tested, and if it is true the

block statements are executed.
• Otherwise, block statements are skipped.

6/5/2018

23

Liaqat Ali, Summer 2018.

23

The if Statement: Syntax

The if-else Decision Structures
24

Liaqat Ali, Summer 2018.

6/5/2018

24

4

• The if-else decision structure provides:

▫ dual alternatives, or

▫ two possible paths of execution.

1. One path is taken if the condition is true,

2. And, the other path is taken if the
condition is false.

6/5/2018

25

Liaqat Ali, Summer 2018.

25

The if-else Statement: Dual Alternative Decision Structure

• Python syntax:
if condition:

Statement 1

Statement 2

Statement 3

else: condition:

Statement 4

Statement 5

Statement 6

• First line known as the
if clause.

• Third line known the
else clause.

• The if clause and else
clause must be
aligned.

• Statements must be
consistently indented.

6/5/2018

26

Liaqat Ali, Summer 2018.

26

The if-else Statement: Syntax

The if-elif-else Decision Structures
27

Liaqat Ali, Summer 2018.

6/5/2018

27

5

• The if-elif-else decision structure allows
more than one condition to be tested.

• Python syntax:
if condition 1:

Statement(s)

elif condition 2:

Statement(s)

elif condition 3:

Statement(s)

else:

Statement(s)

• Use proper indentation in a
nested decision structure.

• Indentation is important for
Python interpreter, and enhance
code readability.

• The if, elif, and else clauses must
be aligned.

• Statements in each block must be
consistently indented.

• The if-elif-else statement is never
required, but it makes logic easier
to follow.

6/6/2018

28

Liaqat Ali, Summer 2018.

28

The if-else Statement: Syntax

Insert as
many elif

clauses

as

necessary.

6/5/2018

29

Adapted.

29

The if-elif-else Statement: Grade Example

• The if-elif-else decision structure allows
more than one condition to be tested.

• Python syntax:
if condition 1:

Statement(s)

elif condition 2:

Statement(s)

elif condition 3:

Statement(s)

else:

Statement(s)

• Use proper indentation in a
nested decision structure.

• Indentation is important for
Python interpreter, and enhance
code readability.

• The if, elif, and else clauses must
be aligned.

• Statements in each block must be
consistently indented.

• The if-elif-else statement is never
required, but it makes logic easier
to follow.

6/6/2018

30

Liaqat Ali, Summer 2018.

30

The if-else Statement: Syntax

Insert as
many elif

clauses

as

necessary.

• One condition or decision structure is
nested inside another condition.
if condition 1:

Statement(s)

elif condition 2:

Statement(s)

else:

Statement(s)

elif condition 3:

Statement(s)

else:

Statement(s)

• Example: Determine if
someone qualifies for a loan,
they must meet two conditions:
▫ Must earn at least

$30,000/year.
▫ Must have been employed for

at least two years.
• Check first condition, and if it is

true, check second condition.

6/6/2018

31

Liaqat Ali, Summer 2018.

31

The if-elif-else Statement: Nested Decision Structure

6/5/2018

32

Adapted.

32

The if-elif-else Statement: Example Flowchart

• Bill James’ Algorithm:

1. Take the number of points one team is ahead.

2. Subtract 3.

3. Add a half-point if the team that is ahead has the ball, and
subtract a half-point if the other team has the ball. (Numbers
less than zero become zero.)

4. Square that result.

5. If the result is greater than the number of seconds left in the
game, the lead is safe.

6/6/2018

33

Liaqat Ali, Summer 2018. Copyright © 2013, 2011 Pearson Education, Inc.

33

Example: What Lead Is Safe in Basketball?

1. Take the number of points one team is ahead .

lead_str = input("Enter the lead in points: ")

lead_int= int(lead_str)

2. Subtract three .

lead_plus3 = lead_int - 3

3. Add a half−point if the team that is ahead has the ball,
and subtract a half−point if the other team has the ball .

has_ball = input("Does the lead team have the
ball (Yes or No):")

if has_ball == "Yes":
lead = lead_plus3 + 0.5

else:
lead = lead_plus3 - 0.5

(Numbers less than zero become zero)

if lead < 0:

lead = 0
4. Square that .

lead_square = lead ** 2
5. If the result is greater than the number of seconds left in the game,
the lead is safe.

seconds = input("Enter the number of second remaining: ")

seconds_int = int(seconds_int)

if lead_square > seconds_int:

print("Lead is safe.")

else:

print("Lead is not safe.")

6/6/2018

34

Liaqat Ali, Summer 2018. Adapted: © 2013, 2011 Pearson Education, Inc.

34

Example: What Lead Is Safe in Basketball?

• Write a Python program and post it on Canvas by tonight
11:59pm.

• Requirements:
1. Input a number from the user.

2. Use the if, elif, and else statements to check if the number is:
i. positive, or

ii. Negative, or

iii. zero.

3. Display an appropriate message.

6/6/2018

35

Liaqat Ali, Summer 2018. Copyright © 2013, 2011 Pearson Education, Inc.

35

Class Participation: if-elif-else

6/5/2018

36

Questions?

Copyright © 2018 by Liaqat Ali

