
CMPT 120: Introduction to Computing Science
and Programming 1

Procedural programming in
Python

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

Reminders
2

Liaqat Ali, Summer 2018.

5/28/2018

2

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
3

Liaqat Ali, Summer 2018.

5/28/2018

3

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

How to Learn in This Course?

Attend Lectures & Labs

Read / review Textbook/Slides/Notes

Reflect and ask Questions

Organize – your learning activities on weekly basis,
and finally…

Write Code, Write Code, and Write Code.
4

Liaqat Ali, Summer 2018.

5/28/2018

4

A

R

R

O

W

1. Deliverables are due by the given date and time.

2. For the course, we are using IDLE to write and run our Python code.

3. You can use the CSIL lab computers outside your lab hours.

4. Plan ahead your assignments and other deliverables. Computer crash,
network problems etc. are not acceptable excuses for delays in
deliverables.

5. You may use online Python interpreters for running and testing your
codes, such as:

https://repl.it/languages/Python3 5

Liaqat Ali, Summer 2018.

5/28/2018

5

Deliverables

1. Each lab has an assigned TA.

2. Attend your assigned lab and show your work to your TA for
the participation marks.

3. Class enrolments and lab swaps are closed now.

6

Liaqat Ali, Summer 2018.

5/28/2018

6

Labs

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python

4. Data types and control structures
5. Fundamental algorithms
6. Binary encodings
7. Basics of computability and complexity
8. Basics of Recursion
9. Subject to time availability:
▫ Basics of Data File management 7

Liaqat Ali, Summer 2018.

5/28/2018

7

1. Coding Practice
2. Input / Output

Functions

3. Types
Type Conversion

4. Order of operations
5. String operations 8

Liaqat Ali, Summer 2018.

5/28/2018

8

Today’s Topics

5/28/2018

9

Liaqat Ali, Summer 2018.

9

Coding Practice: Write Code From Flowchart

• Computers process data.

• Data processing is typically a 3-step process.
1. Input: Receive input.

 Input: any data that the program receives
while it is running

2. Process: Perform some process on the
input.

 Example: mathematical calculation
3. Output: Produce output

5/28/2018

10

Liaqat Ali, Summer 2018.

10

Computer – A Data Processing Machine

Input

Processing

Output

• Input(): We use input function to get input from users.

• Input function lets you ask a user for some text input.

• When you call this function, your program stops and waits for the user to key
in the data.

• When a user enters data, the input function returns the data as a string.

• Format: variable = input(prompt)

▫ prompt is usually a string to instruct to user to enter a value.

▫ The input function does not automatically display a space after the prompt.

▫ Example: midterm_marks = input(“Enter midterm marks: ”)

5/28/2018

11

Liaqat Ali, Summer 2018.

11

Getting Input From Users

• input(): function always returns a string.

• Python provides us more built-in functions to convert the string data type
into number data types.
1. int(string_data_argument) converts string_data type to an int type.

2. float(string_data_argument) converts string_data type to an float type.

• Nested function call: We can nest one function inside another function.
▫ Format: function1(function2(argument))

 A value returned by function2 will be passed to function1.

 midterm_marks = float(input(“Enter marks: “))

▫ Type conversion only works if string_data_argument is a valid numeric value, otherwise,
program with throw an error message, or exception.

5/28/2018

12

Liaqat Ali, Summer 2018.

12

Reading Numbers with the input Function

• Function: Function is a piece (or a block) of reusable code written to perform a
single, related task.
1. We can write functions inside our programs.

 We haven’t done that yet. But, we will do it later in coming weeks.

2. Python provides us with some pre-written functions to use in our programs. For
example, input() is a pre-written Python function.

3. We may send some data to a function, inside parenthesis, to process it.
1. We call this data as arguments.

4. A function may return us back some result.
5. We also call these pre-written Python function as built-in functions.
6. We can name functions like variable.
7. How to identify a function? Functions names are followed by a pairs of parenthesis ()

5/28/2018

13

Liaqat Ali, Summer 2018.

13

Functions

• print(): Use output function to display a line of output from a program.

▫ Newline character (' \n' } at end of printed data. (Moves cursor to next line.)

• Format: print(value1, value2, . . . , sep = ' ' , end = ' delimiter ')
>>> print(67)

▫ >>> 67

▫ print()accepts multiple items as arguments. >>> print(total, gpa)

>>> _______________

▫ print()uses space as item separator by default.

>>> print(total, gpa, sep = ' , ')
>>> ________________

5/28/2018

14

Liaqat Ali, Summer 2018.

14

Displaying Output From Your Program

• Special argument end='delimiter' causes print to place delimiter at
end of data instead of newline character.
>>> print(total, gpa, end = ' . ')
>>> ___________________

• We can also use following special characters inside string literals.
▫ Preceded by backslash (\): newline (\n), horizontal tab (\t)
▫ They are treated as commands embedded in strings.
>>> print(total, gpa, sep = ' \t ' , end = ' . \n\n ')
>>> ________________

• + operator between two strings performs string concatenation
▫ Useful for breaking up a long string literal into more than one literals

>>> print('This will \t' + ' be joined together. \n ')

5/28/2018

15

Liaqat Ali, Summer 2018.

15

Displaying Output From Your Program

• Using round() to format output.
>>> exchangeRate = 3.476524

>>> round(exchangeRate, 2)

>>> _________________

• We can also use % as place holder for values with a format code and number.
>>> item = 'Chair'

>>> cost = 200

>>> print(item, cost)

Price of a Chair is 200.

>>> print('Price of a %s is %d.' %(item, cost))

>>> print('Price of a %10s is %10d.' %(item, cost))

5/28/2018

16

Liaqat Ali, Summer 2018.

16

Displaying Output From Your Program

hours_worked = input("Enter hours worked: ")

hourly_rate = input("Enter hourly rate: ")

gross_pay = float(hours_worked) * float(hourly_rate)

print(gross_pay)

5/28/2018

17

Liaqat Ali, Summer 2018.

17

Identify Variables, Functions, Arguments, Operator

functions

Strings literal used
as argument

Operator
Variable used as

argument

Variables

• Values: A value is one of the basic things (data) a program works with, like a
letter or a number.

• A value can be of different type (or category or class):
▫ Number

 Integer (int)

 Float-point number (float)

▫ String (str)

• type(): The type() function can be used to check type of a value in the shell.

>>> type(2) >>> type(42.0) >>> type('Hello, World!')

_____________ ___________ ____________

5/28/2018

18

Liaqat Ali, Summer 2018.

18

Values: Types

• Natural Languages: The languages people speak, such as English or Spanish.

• Formal Languages: The languages that are designed by people for specific
applications. For example, programming languages, such as Python or C++.

▫ These languages are designed to express computations.

• Formal languages tend to have strict structure of statements, called syntax.

Read section 1.6, of textbook Think Python for details.

5/28/2018

19

Liaqat Ali, Summer 2018.

19

Formal and Natural Languages

• Programmers make mistakes. Programming errors are called bugs

• Debugging: Debugging is a process finding and fixing errors in the code.

• Be prepared:
▫ Programming, and especially debugging, sometimes brings out strong emotions.

▫ If you are struggling with a difficult bug, you might feel angry, despondent, or
embarrassed.

Read section 1.7, of textbook Think Python for details.

5/28/2018

20

Liaqat Ali, Summer 2018.

20

Debugging

• As programs get bigger and complicated, they get more difficult to read.

• Formal languages are dense, and it is often difficult to look at a piece of code
and figure out what it is doing, or why.

• For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing.

• These notes are called comments, and they start with the # symbol:

compute the percentage of the hour that has elapsed

percentage = (minute * 100) / 60
• This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

5/28/2018

21

Liaqat Ali, Summer 2018.

21

Comments

hours_worked = 0
hourly_rate = 0
gross_pay = 0

hours_worked = input("Enter hours worked: ")
hourly_rate = input("Enter hourly rate: ")
gross_pay = float(hours_worked) * float(hourly_rate)
print(gross_pay)

5/28/2018

22

Liaqat Ali, Summer 2018.

22

Practice: Add Comments To The Following Code

Never submit your
code without
comments.

No comments means
your program is not

yet ready or
submission.

Gross_Pay.py
#
In-Class Practice
Gross Pay Computation
#
Liaqat Ali
May 2018

Set up pay variables
hours_worked = 0
hourly_rate = 0
gross_pay = 0

Ask the customer for the input
Get the number of hours worked by the employee.
hours_worked = input("Enter hours worked: ")

Get the per hour rate for the employee.
hourly_rate = input("Enter hourly rate: ")

Compute the gross pay
gross_pay = float(hours_worked) * float(hourly_rate)

Display the gross pay earned by the employee
print(gross_pay)

5/28/2018

23

Liaqat Ali, Summer 2018.

23

Comment Your Programs: Sample

Class participation. (Due tonight): Add comments to the attached
program (as shown on lecture slide 23: Comment Your Programs:
Sample) and post it on the Canvas Discussions forum by tonight
11:59pm.

(Note: You would comment all your future programs in the same
way. Try to create your personalized comments template, and save
it on your computer.)

6/1/2018

24

Liaqat Ali, Summer 2018.

24

Class Participation

• When an expression contains more than one operator, the order of
evaluation depends on the order of operations.

• For mathematical operators, Python follows mathematical convention. The
acronym PEMDAS is a useful way to remember the rules:

▫ Parentheses have the highest precedence and can be used to force an expression
to evaluate in the order you want.

▫ Expressions in parentheses are evaluated first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8.

▫ You can also use parentheses to make an expression easier to read, even if it
doesn’t change the result. As in: (minute * 100) / 60.

6/1/2018

25

Liaqat Ali, Summer 2018.

25

Order of Operations

• Exponentiation has the next highest precedence, so: 1 + 2**3 is
9, not 27, and 2*3**2 is 18, not 36.

• Multiplication and Division have higher precedence than Addition and
Subtraction. So:
2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

• Operators with the same precedence are evaluated from left to right (except
exponentiation).

• So in the expression degrees / 2 * pi, the division happens first and the
result is multiplied by pi. To divide by 2pi, you can use parentheses degrees / (2
* pi) or write degrees / 2 / pi.

6/1/2018

26

Liaqat Ali, Summer 2018.

26

Order of Operations

• We can’t perform mathematical operations on strings. The following is illegal:
'2'-'1' 'eggs'/'easy' 'third'*'a charm'

• But there are two exceptions, + and *.
▫ The + operator performs string concatenation, which means it joins the strings by linking

them end-to-end. For example:

>>> first = 'throat'
>>> second = 'warbler'
>>> first + second
Throatwarbler

The * operator performs repetition on strings. For example, 'Spam'*3 is
'SpamSpamSpam'. If one of the values is a string, the other has to be an integer.

5/28/2018

27

Liaqat Ali, Summer 2018.

27

String Operations

5/28/2018

28

Questions?

Copyright © 2018 by Liaqat Ali

