

CMPT 120: Introduction to Computing Science and Programming 1

Procedural programming in Python

Copyright © 2018, Liaqat Ali. Based on <u>CMPT 120 Study Guide</u> and <u>Think Python - How to Think Like a Computer Scientist</u>, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.

Reminders

One-Stop Access To Course Information

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline
- Exam Schedule
- Python Info
- <u>CourSys/Canvas</u> link and more...

- Learning Outcomes
- Office Hours
- Textbook links

- Grading Scheme
- Lab/Tutorial Info
- Assignments
- Canvas: Discussions forum <u>https://canvas.sfu.ca/courses/39187</u>
- CourSys: Assignments submission, grades www.coursys.sfu.ca

5/20/2018

R

5/20/2018

How to Learn in This Course?

- **Attend** Lectures & Labs Α
 - Read / review Textbook/Slides/Notes every week
- **Reflect** and ask Questions R
- **Organize** your learning activities on weekly basis, and finally...
- Write Code, Write Code, and Write Code. W

Additional / Online References

- Additional references are as <u>important</u> as the texts, and <u>very</u> important to your success.
 - They aren't meant to be read from beginning to end like the readings in the textbook.
- Use them to get an <u>overall picture</u> of the topic and as <u>references</u> as you do the assignments.

Course Topics

- **1.** General introduction
- 2. Algorithms, flow charts and pseudocode
- 3. **Procedural programming in Python**
- 4. Data types and control structures
- 5. Fundamental algorithms
- 6. Binary encodings
- 7. Basics of computability and complexity
- 8. Basics of Recursion
- 9. Subject to time availability:
 - Basics of Data File management

5/20/2018

Today's Topics

- 1. Programs Recap
- 2. Expressions
- 3. Operands
- 4. Operators
 - i. Arithematic Operators (+, -, *, /)
 - ii. Comparison operators
- 5. Reflection

Programs Recap

Program Recap: Compute Grade (Solution)

midterm = 0 final = 0

```
midterm = input("Enter midterm:")
final = input ("Enter final:")
```

```
total = float(midterm) + float(final)
```

```
if total>=95: print("A+")
elif total>=90 and total<95: print("A")</pre>
```

elif total>=85 and total<90: print("A-") elif total>=80 and total<85: print("B+") elif total>=75 and total<80: print("B") elif total>=70 and total<75: print("B-") elif total>=65 and total<70: print("C+") elif total>=60 and total<65: print("C") elif total>=55 and total<60: print("C-") elif total>=50 and total<55: print("D") else: print("F")

Program Recap: Sum of Natural Numbers (Solution)

sum = 0	sum = 0
n = 1	n = 1
while (n <= 100):	
sum=sum+n	sum=sum+n
n=n+1	n=n+1
print(sum)	print(sum)

5/22/2018

Expressions

Expressions

- We are now familiar with, and have used in our programs:
 - a. values, such as 5, 7, or 100
 - b. variables, such midterm, final, or total
 - c. operators, such +, /, or %
- An expression is a

- We can categorize expressions based on their result types:
 - 1.

2.

Liaqat Ali, Summer 2018.

5/21/2018

Arithmetic Expressions

- When result of an expression is a numeric value, we can call it an Arithmetic Expression.
 - For example, ______ is an arithmetic expression if n is numeric.
 - Suppose n is 5, then the value of the arithmetic expression n + 1 would be 6, which is a numeric value.

_____is an arithmetic expression if meters is numeric.

- Suppose meters is 2, then the value of the arithmetic expression meters * 39.37 would be 78.74, which is again a numeric value.
- A numeric value can be an integer (whole number), or
- A floating point number (with decimal point).

Liaqat Ali, Summer 2018.

Boolean Expressions

• When the result of an expression is either **True** or **False**, we call it a **Boolean Expression**. For example:

Meaning

<u>Outcome</u>

□ **5 < 7**

marks > 95

Operands

In our previous class, we talked about operators.

- Operators are special symbols that represent computations.
- Arithmetic Operators are symbols we use to represent arithmetic operations. For example, +, -, *, or /.
- We'll continue with operators today and will talk about Comparison Operators.
- But first, let's get familiar with a new term Operands.

Liaqat Ali, Summer 2018.

5/21/2018

Operands

- For example, in an arithmetic expression _____, the values 50 and 10 are operands.
- In _____, the values 70 and 15 are operands.
- They are the data to be **operated on** by the operator.
- So, think of operands just another name for the values operators use.
- Operands can be values or variable names.
 - For example, in ______, both the operands mid and final are variables.

Liaqat Ali, Summer 2018.

5/21/2018

Comparison Operators

Liagat Ali, Summer 2018.

SFL

Operators: Compute Grade

midterm = 0Special symbol.final = 0Arithematic Op.

midterm = input("Enter midterm:")
final = input ("Enter final:")

total = float(midterm) + float(final)

if total>=95: print("A+")
elif total>=90 and total<95: print("A")</pre>

elif total >= 85 and total < 90. print("A-") elif total >= 80 and total < 85: print("B+") elif total >= 75 and total < 80: print("B") elif total >= 70 and total < 75: print("B-") elif total >= 65 and total < 70: print("C+") elif total >= 60 and total < 65: print("C") elif total >= 55 and total < 60: print("C-") elif total >= 50 and total < 55: print("D") else: print("F")

Do you recognize any other symbols / operators?

5/21/2018

Comparison Operators

• The symbols

called comparison operators. (They are 6 in number.)

- Comparison operators are used to compare values or operands.
 - For example in a Boolean expression:
 - 5 < 6: the symbol < is a comparison operator, and 5 and 6 are values.
 - total >= 90, >= is a comparison operator, and total and 90 are values.
- A comparison either returns a True or False result.

An expression that results into a true or false value is called a Boolean Expression.
 Liagat Ali, Summer 2018.

are

Comparison Operators: Descriptions and Examples

Sin	nnose: a - 5 h - 7		Mooning	******
1.	< less than	(a <b)< th=""><th>is a less than b?</th><th></th></b)<>	is a less than b?	
2.	<= less than or equal	(a <=b)	is a less than or equal to b?	
3.	> greater than	(a > b)	is a greater than b?	
4.	<pre><= greater than or equal</pre>	(a >= b)	is a greater than or equal b?	
5.	== equal	(a == b)	is a equal to b?	
6.	!= not equal	(a != b)	is a not equal to b?	
10000000000000000000000000000000000000		(a <> b)		
Liaq	at Ali, Summer 2018.			

FU SIMON FRASER UNIVERSIT

Grade Program Example

- Recall this program we wrote last week.
- In the comparison expression if total >= 50:
 - What conditional operator did it use?
 - >= (greater than or equal)
 - What are the operands?
 - What are the possible outcomes?
 - We call this outcome as True
 - We call this outcome as False

```
midterm = input()
final = input()
total = float(mid) +
float(final)
  total >= 50:
   print("Pass")
else:
```

print("F")

5/21/2018

Grade Computation Program

Greater than or equal comparison operator

midterm = 0final = 0total = 0midterm = input() final = input() total = float(midterm) + float(final) if total >= 95: print("A+")

Liagat Ali, Summer 2018.

elif total >= 90 and total < 95: print("A") elif total >= 85 and total < 90: print("A-") elif total >= 80 and total < 85: print("B+") elif total >= 75 and total < 80: print("B") elif total >= 70 and total < 75: print("B-") elif total >= 65 and total < 70: print("C+") elif total >= 60 and total < 65: print("C") elif total >= 55 and total < 60: print("C-") elif total >= 50 and total < 55: print("D") else: print("F") Less than comparison

We'll talk next.

operator.

5/22/2018

5/22/2018

Reflection

Compute Grade – Version 2

midterm = 0 final = 0 grade = ""

midterm = input("Enter midterm:")
final = input ("Enter final:")

```
total = float(midterm) + float(final)
```

if total>=95: grade = "A+"

elif total>=90 **and** total<95: grade = "A"

elif total>=85 and total<90: grade = "A-"

elif total>=80 and total<85: grade = "B+" elif total>=75 and total<80: grade = "B" elif total>=70 and total<75: grade = "B-" elif total>=65 and total<70: grade = "C+" elif total>=60 **and** total<65: grade = "C" elif total>=55 and total<60: grade = "C-" elif total>=50 **and** total<55: grade = "D" else: grade = "F" print(grade) print(total, grade)

print("Total marks = ", total, "Grade = ", grade)

Class Participation Activity

- 1. Copy and run this program.
- 2. Reflect on:
 - a. How this program differs from the program on slide 8.
 - b. Why it produces the same output as the program on slide 8.
 - c. Which approach you think is better: direct printing, or using a variable? Think of one reason?
 - d. What if you replace the word **and** with **or** in the if conditionals?
 - Modify and run the program for the pair of values 34,40; 60,30; 23, 4; and 45, 46.
- 3. Post your reflections on the **Canvas Discussions** forum after the class today.

5/20/2018

27

Copyright © 2018 by Liaqat Ali