
CMPT 120: Introduction to Computing Science
and Programming 1

Procedural programming in
Python

Copyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly.
Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/guide
http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

• Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline - Learning Outcomes - Grading Scheme
- Exam Schedule - Office Hours - Lab/Tutorial Info
- Python Info - Textbook links - Assignments
- CourSys/Canvas link - and more…

• Canvas: Discussions forum - https://canvas.sfu.ca/courses/39187

• CourSys: Assignments submission, grades - www.coursys.sfu.ca
2

Liaqat Ali, Summer 2018.

5/16/2018

2

One-Stop Access To Course Information

https://canvas.sfu.ca/courses/39187/modules/items/939065
http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://canvas.sfu.ca/courses/39187
https://canvas.sfu.ca/courses/39187
https://coursys.sfu.ca/2018su-cmpt-120-d1/
https://coursys.sfu.ca/2018su-cmpt-120-d1/
http://www.coursys.sfu.ca/

Additional Resources / Online References

• Online references are as important as the texts. (Links on course website.)

• These resources are very important to your success.
 They aren’t meant to be read from beginning to end like the readings in the textbook.

• You should use them to get an overall picture of the topic and as
references as you do the assignments.

3

Liaqat Ali, Summer 2018.

5/16/2018

3

How to Learn in This Course?

Attend Lectures & Labs

Read / review Textbook/Slides/Notes

Reflect and ask Questions

Organize – your learning activities on weekly basis,
and finally…

Write Code, Write Code, and Write Code.
4

Liaqat Ali, Summer 2018.

5/16/2018

4

A

R

R

O

W

Course Topics
1. General introduction
2. Algorithms, flow charts and pseudocode
3. Procedural programming in Python
4. Data types and control structures
5. Fundamental algorithms
6. Binary encodings
7. Basics of computability and complexity
8. Basics of Recursion
9. Subject to time availability:
▫ Basics of Data File management

5

Liaqat Ali, Summer 2018.

5/16/2018

5

1. What is a program?
2. Arithmetic operators

6

Liaqat Ali, Summer 2018.

5/17/2018

6

Today’s Topics

Think of your own definition of a program.
• A sequence of instructions that specifies how to solve a problem.

• A sequence of instructions that specifies how to perform a
computation. [Think Python]

• A sequence of instructions written in a programming language that
specifies how to perform a computation.

• A set of instructions that a computer follows to perform a task. [Gaddis]

• Programs are commonly referred to as Software.
• Programmer: Person who designs, creates, and test programs – also called developer.

5/17/2018

7

Liaqat Ali, Summer 2018.

7

What is a Program?

• Input instructions: To get data from keyboard, a file, or some other device.
▫ For example: input()

• Output: To display data on screen, or save in a file, etc.
▫ For example: print(sum)

• Math instructions: To perform basic arithmetic operations.
▫ For example, addition, multiplication etc. sum = mid + final

• Conditional: Check for certain conditions and run the appropriate code.
▫ For example: If (n1 < num2):

• Repetition: Perform some action repeatedly, usually with some variation.
▫ For example: while (N <=100):

5/17/2018

8

Liaqat Ali, Summer 2018.

8

Common Instruction Types Used in Programs

• Believe it or not, that’s pretty much all there is to program.

• Every program you’ve ever used, no matter how complicated, is
made up of instructions that look pretty much like these (on the
previous slide).

• So you can think of programming as the process of breaking a
large, complex task into smaller and smaller subtasks until the
subtasks are simple enough to be performed with one of these
basic instructions.” [Think Python]

5/17/2018

9

Liaqat Ali, Summer 2018.

9

Believe it or not…

5/18/2018

10

Liaqat Ali, Summer 2018.

10

Write a Program for Following Marks Flowchart
m = 0
f = 0
t = 0
m = input()
f = input()
t = float(m) + float(f)
if (t<50):

print(“fail”)
else:

print(“pass”)

if t>=95: print(“A+”)
elif t>=90 and t<95: print(“A”)
elif t>=85 and t<90: print(“A-”)
elif t>=80 and t<85: print(“B+”)
elif t>=75 and t<80: print(“B”)
elif t>=70 and t<75: print(“B-”)
elif t>=65 and t<70: print(“C+”)
elif t>=60 and t<65: print(“C”)
elif t>=55 and t<60: print(“C-”)
elif t>=50 and t<55: print(“D”)
else: print(“F”)

• Mathematical computations addition, subtraction, multiplication

and addition are also know as Arithmetic Operations.

• The +, -, *, and / symbols we use to represent these arithmetic

operations are called Arithmetic Operators, or more generally,

operators.

• In general, we can say that operators are special symbols that

represent computations.

5/17/2018

11

Liaqat Ali, Summer 2018.

11

Arithmetic Operators

• Addition operator: >>> 50 + 10
60

• Subtraction operator: >>> 50 - 10
40

• Multiplication operator: >>> 50 * 10
500

• Division operator: >>> 50 / 10
5.0

5/17/2018

12

Liaqat Ali, Summer 2018.

12

Arithmetic Operators: Examples

• Exponentiation operator: >>> 5 ** 2
25

• Floor division operator: Division that results into round-down whole

number. >>> 57 // 10
5

• Modulus (remainder) operator: Remainder of the division (57/10).

>>> 57 % 10
7

5/18/2018

13

Liaqat Ali, Summer 2018.

13

More Operators

5/16/2018

14

Questions?

Copyright © 2018 by Liaqat Ali

