CMPT 120: Introduction to Computing Science and Programming 1

Algorithms, Flowcharts and Pseudocodes

 pythonCopyright © 2018, Liaqat Ali. Based on CMPT 120 Study Guide and Think Python - How to Think Like a Computer Scientist, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim.
Copyrights © to respective instructors. Icons copyright © to their respective owners.

One-Stop Access To Course Information

- Course website: One-stop access to all course information. http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html
- Course Outline
- Exam Schedule
- Python Info
- CourSys/Canvas link
- Canvas: Discussions forum.
https://canvas.sfu.ca/courses/39187
- CourSys: For assignments submission, and grades. www.coursys.sfu.ca
- Learning Outcomes
- Office Hours
- Textbook links
- and more...

Some Reminders

- Get familiar with the course Website.
- http://www2.cs.sfu.ca/CourseCentral/12 0/liaqata/WebSite/index.html
- Minor updates may occur during first week.
- Get fob to access LABS (start next week!)
- If you don't have it already, get a new fob from Discovery Park 1.

Liaqat Ali, Summer 2018.

Additional Resources / Online References

- There are several online references that are as important as the texts. (Links provided on the course web site.)
- These resources are very important to your success in this course. They aren't meant to be read from beginning to end like the readings in the textbook.
- You should use them to get an overall picture of the topic and as references as you do the assignments.

How to Learn in This Course?

A Attend Lectures \& Labs
R Read/review Textbook/Slides/Notes
R Reflect and ask Questions
O Organize - your learning activities on weekly basis, and finally...
W Write Code, Write Code, and Write Code.

Today’s Topics

1. Continue with Algorithms
 2. Flowchart

https://etherpad.canvas.sfu.ca/p/i8z1KeIGBGco3wHfCPSJrPyv8VoMoIMe2laPnvFKp

Today's Topics

Continue with Algorithms

Liaqat Ali, Summer 2018.

Algorithm: Find the Smallest of Three Numbers

Step 1: Start

Step 2: Declare variables n1, n2, and n3.
Step 3: Read variables n1, n2, and n3.
Step 4: If $\mathrm{n} 1<\mathrm{n} 2$ then:
Step 5: If $n 1<n 3$ then print $n 1$ is the smallest number.
Step 6: else print n3 is the smallest number.
Step 7: else
Step 5: If $\mathrm{n} 2<\mathrm{n} 3$ then print n 2 is the smallest number.
Step 6: else print n 3 is the smallest number.

Step 9: End

Let's Write Another Algorithm: Even or Odd Number

Write an algorithm to print whether the user entered an even or an odd number.
Step 1: Start
Step 2:
Step 3:
Step 4:

Step 4:
Step 5:
else
Step 6: End
Liaqat Ali, Summer 2018.

Today's Topics

Flowcharts

Liaqat Ali, Summer 2018.

Flowcharts

- Flowchart is a graphical representation of an algorithm. ㅁ

Flowcharts: Geometric Shapes and Their Meanings

Draw a Flowchart for the Adding Two Numbers Algorithm

Step 1: Start

Step 2: Declare a variable N1.
Step 3: Declare a variable N2.
Step 4: Declare a variable \mathbf{S} to store the sum.
Step 5: Get the value of N1 from the user.
Step 6: Get the value of N2 from the user.
Step 7: Add N1 and N2 and assign the result to S.
Step 8: Display the sum S.
Step 9: End

Modify Algorithm: Add, If Sum < 50 Then Fail Else Pass

Step 1: Start

Step 2: Declare a variable N1.
Step 3: Declare a variable N2.
Step 4: Declare a variable \mathbf{S} to store the sum.
Step 5: Get the value of $\mathbf{N 1}$ from the user.
Step 6: Get the value of N2 from the user.
Step 7: Add N1 and N2 and assign the result to S.
Step 8: Display the sum S.

Step 9:

Step 10: End

Liaqat Ali, Summer 2018.

Modify the Flowchart

Draw Flowchart: Find the Smaller of Two Numbers Algorithm

Write an algorithm to find the smaller of two numbers entered by a user. Step 1: Start
 Step 2: Declare a variable num1 to store the first number.
 Step 3: Declare a variable num2 to store the second number.
 Step 4: Get the value of num1 from the user.
 Step 5: Get the value of num 2 from the user.
 Step 6: If num1 < num2 then print num1 is smaller.
 Step 7: If num2 < num1 then print num2 is smaller.
 Step 8: If num1 = num2 then print "Both the numbers are equal."
 Step 9: End

Flowchart: Smaller of Two Numbers

Step 1: Start

Step 2: Declare variables n1, n2, and n3.
Step 3: Read variables n1, n2, and n3.
Step 4: If n1 < n2 then:
Step 5:
Step 6:
Step 7:
Step 5:
Step 6:
If $n 1<n 3$ then print $n 1$ is the smallest number. else print n 3 is the smallest number.
else
If $n 2<n 3$ then print $n 2$ is the smallest number. else print n 3 is the smallest number.

Step 9:

End
Liaqat Ali, Summer 2018.

9

Questions?

