

CMPT 120: Introduction to Computing Science and Programming 1

Algorithms, Flowcharts and Pseudocodes

Copyright © 2018, Liaqat Ali. Based on <u>CMPT 120 Study Guide</u> and <u>Think Python - How to Think Like a Computer Scientist</u>, mainly. Some content may have been adapted from earlier course offerings by Diana Cukierman, Anne Lavergn, and Angelica Lim. Copyrights © to respective instructors. Icons copyright © to their respective owners.

One-Stop Access To Course Information

Course website: One-stop access to all course information.

http://www2.cs.sfu.ca/CourseCentral/120/liaqata/WebSite/index.html

- Course Outline
- Exam Schedule
- Python Info
- <u>CourSys/Canvas</u> link

SFU SIMON FRASER UNIVERSITY

- Learning Outcomes Grading Scheme
- Textbook links
- and more...

- Office Hours Lab/Tutorial Info
 - Assignments

- Canvas: Discussions forum. https://canvas.sfu.ca/courses/39187
- **CourSys:** For assignments submission, and grades. www.coursys.sfu.ca

Some Reminders

• Get familiar with the course Website.

- <u>http://www2.cs.sfu.ca/CourseCentral/12</u> <u>0/liaqata/WebSite/index.html</u>
- Minor updates may occur during first week.
- Get fob to access LABS (start next week!)
 - If you don't have it already, get a new fob from Discovery Park 1.

3

Additional Resources / Online References

- There are several online references that are as important as the texts. (Links provided on the course web site.)
- These resources are very important to your success in this course. They aren't meant to be read from beginning to end like the readings in the textbook.
- You should use them to get an overall picture of the topic and as references as you do the assignments.

How to Learn in This Course?

Today's Topics

Algorithms.

Liaqat Ali, Summer 2018.

Algorithm: Its Definition and Key Properties - 1

- During the last lecture, we talked about algorithms.
- Now, let's have a look at a couple of more definitions.

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

[Source: CMPT 120 Study Guide; Anany Levitin, Introduction to The Design & Analysis of Algorithms, p. 3]

Liaqat Ali, Summer 2018.

5/12/2018

 An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

[Source: Thomas H. Cormen, Chales E. Leiserson (2009), Introduction to Algorithms 3rd edition.]

UNIVERSITY

5/12/2018

SFU SIMON FRASER UNIVERSITY

9

Algorithm: Key Properties

- Unambiguous: Each step of an algorithm has to be precisely defined.
 - After reading an algorithm, there should be no question about what to do.
- Specific problem: An algorithm should always present a solution to a particular problem, or group of problems.
- Legitimate input: An algorithm might need some kind of input to do its job. This input should be relevant.
- Finite amount of time: If started, an algorithm must end eventually. If it never ends, it's useless.
- Clear I/O: Inputs and outputs should be defined clearly.
- Effective: Should be effective among many different ways to solve a problem.

Algorithm: Watch A Video

Let's watch this short video about algorithms.
You will hear two new terms related to algorithms in this video. Let's see if you can note them down.

What's an algorithm?

5/12/2018

Algorithm: The Two New Terminologies

Liaqat Ali, Summer 2018.

Algorithm: Add Two Numbers Entered by a User

Step 1: Start

Liaqat Ali, Summer 2018.

Algorithm: Verify the Properties

Step 1: Start

- **1.** Is it Unambiguous?
- 2. Solves specific problem?
- **3.** Legitimate input?
- 4. Finite time?
- 5. Clear I/O?
- **6.** Is it effective?

Algorithm: A Few Computing Science Terminologies

- In Computing Science, we usually don't write "suppose". Rather, we typically say "declare".
- We call N1, N2, and SUM as "variables".
 - And, variables typically "store" values.

So, We may choose to re-write the step: Suppose, N1 is the first number.

- As: Declare a variable N1.
- **Or, Declare a variable N1 to store the value of first number.**
- Or, Declare a variable N1 to store the value of the first number entered by the user.

Re-Write the Add Two Numbers Algorithm

Re-write the following "add two numbers algorithm" replacing the words declare, variable and store, as necessary.

Algorithm: Find the Smaller of Two Numbers

Write an algorithm to find the smaller of two numbers entered by a user.

Step 1: Start

Algorithm: Find the Smallest of Three Numbers

• Write an algorithm to find the smallest of three numbers entered by a user.

Solution in the next class.

5/12/2018

Copyright © 2018 by Liaqat Ali