
Tutorial 4

Problem 1.

Page 72, Section 8.3 of our online textbook:

Write a function that takes a string as a parameter and displays the letters backward, one per
line. Then, write another function that takes a string as a parameter and returns the string
reversed (without printing it).

Problem 2.

Consider the Bubble Sort algorithm below:

for end in range(len(data) – 1, 0, -1):

 for swapIndex in range(0, end, 1):

 if data[swapIndex] < data[swapIndex + 1]:

 # we swap:

 tempVar = data[swapIndex +1]

 data[swapIndex +1] = data[swapIndex]

 data[swapIndex] = tempVar

Hand trace the algorithm while we are sorting the following data list in a decreasing sort order:

4 9 6 3 1 8 2 0 5 7

As we are answering this question, let’s show our work. This is to say, what did the list looks like
before and after each iteration of the algorithm.

Problem 3.

Write a recursive function printPattern(seed, depth) such that when we call it as
follows: printPattern('a', 8), it produces the following output:

Hint: Investigate the built-in functions ord('a'), which produces 97, and chr(97) which
produces 'a'. Perhaps, we can combine them.

Why is the first parameter called ‘seed’? Why is the second parameter called ‘depth’?

Problem 4.

Exercise 8.3 from our online textbook:

A string slice can take a third index that specifies the “step size”; that is, the number of spaces between
successive characters. A step size of 2 means every other character; a step size of 3 means every third,
etc.

A step size of -1 goes through the word backwards, so the slice [: : -1] generates a reversed string. Use
this to write a loop-free (i.e., no loop) version of the function is_palindrome().

Would this function take parameter(s) and if so, how many? Would this function return a value and if so,
what?

Problem 5.

Have a look at the Python program below:

variable1 = 1

variable2 = 2

def function1():

 variable3 = 3

 variable4 = variable3

 return variable4

def function2(parameter1):

 variable5 = parameter1

 variable6 = 6

 return variable5

def function3(parameter2, parameter3):

 variable7 = parameter2

 variable8 = parameter3

 return variable9

Main part of program

variable10 = function2(variable3)

print(function3(variable5, variable2))

variable1 = function1()

a. What is wrong with this program?
b. In general, what is the scope of a variable?
c. In general, what is the scope of a parameter?
d. In general, what is the relationship between variable scope and the stack frame of a

function?
e. What is the scope of each of the 10 variables in the Python program?
f. What is the scope of each of the 3 parameters in the Python program?

Problem 6. The keyword None

The list methods append() and insert() modify the list that calls these methods. For

example, the list aList is modified by the following statement:

aList.insert(2,26)

So, if aList was [1, 2, 3, 4], it then becomes [1, 2, 26, 3, 4]. Hence, we do
not need to reassign the result of these methods back to the list. This is to say that we do now
have to do the following:

alist = aList.insert(2,26)

Actually, the above statement will destroy our aList. To see why that is, execute the
following Python code fragment and see what it does:

Python Code Fragment:
aList = [1,2,3,4,5]

aList = aList.append(8)

print(aList)

List methods such as insert(), append(), and remove() modify the list that called
them, i.e., the list on the left hand side of the “.” (access operator). These methods do not
return anything (such as a list, a number, etc…). When Python functions and methods do not
return any value, None is returned. In the above Python code fragment, the aList is assigned
the value None because append() does not return a value. Hence, None is printed on the

computer monitor screen when the last statement, i.e., the print statement

print(aList) is executed.

