
Problem 8.

What is the time efficiency of each of the following Python code fragments. Express this time
efficiency using the Big O notation seen in class. The critical operation is “+”, i.e., the addition.

a) y = y + 1000

The critical operation “+” is executed only once no matter how large our data is (no
matter how large n is.) So we get a time efficiency of O(1).

b) for each in range(n)
 x = x + y

 y = y + 1000

The critical operation “+” is executed twice per iteration of the for loop. The for loop
iterates n times. So, the total number of time the critical operation “+” is executed is 2n.
The Big O notation is O(2n), however, the factor 2 is removed so we get a time efficiency
of O(n).

c) count = 0
for each in range(n)

 count = count + 10

for each in range(n)

 count = count + each

The critical operation “+” is executed once per iteration of the first for loop. The first for
loop iterates n times. So, the total number of time the critical operation “+” is executed
by the first for loop is n. The same analysis holds for the second loop.
Therefore the time efficiency of the entire code fragment is O(n + n) => O(2n) => O(n)
(see b) above).

d) count = 0

for each in range(n)

 for element in range(n)

 count = count + 10

The critical operation “+” is executed once per iteration of the inner for loop. The inner
for loop iterates n times each time the outer for loop iterates once. The outer for loop
iterate n times in total. So, the total number of time the critical operation “+” is
executed is 1 x n x n -> n2. Therefore the time efficiency of the entire code fragment is
O(n2).

By the way, the above code fragment is similar to the sorting algorithms we saw in
Friday’s lecture.

