
Tutorial 3

Problem 1.

Consider the Binary Search algorithm below:

PreCondition: data must be sorted

binarySearch(list, target)

 set position to -1 (TARGET_NOT_FOUND)

 set targetNotFound to true

 if list not empty

 while targetNotFound AND have not looked at or discarded

 every element of list

 find middle element of list

 if middle element == target

 set position to position of target in original list

 set targetNotFound to false

 else

 if target < middle element

 list = first half of list

 else

 list = last half of list

 return position

a) Hand trace the algorithm while we are searching for the target 4 in the following data list:

-27 -14 -2 -1 2 3 4 6 8 9 13 24 35

Let’s show our work, i.e., for each iteration of the algorithm, show the middle element, the
partition (section of the list) we are discarding and the one we are keeping.

Which scenario does the above situation represent: best, average or worst case scenario?

b) Hand trace the algorithm while we are searching for the target 13 in the following data list:

-7 -4 -2 -1 2 3 4 6 8 9 13 24 35

Again, let’s show our work.

Which scenario does the above situation represent: best, average or worst case scenario?

c) Hand trace the algorithm while we are searching for the target 5 in the following data list:

-1 -27 24 -2 3 35 -14 6 13 9 8 2 4

Do you have any observations?

Note: Download and execute the two binary search programs (BinarySearch_Iterative and
BinarySearch_Recursive) posted on our course web site. Make sure you become familiar with
the code of these two Python programs.

Problem 2.

Exercise 9.1. from our online textbook:

Write a Python program that reads words.txt
(http://greenteapress.com/thinkpython2/code/words.txt) and prints only the words with more
than 20 characters (not counting whitespace and newline character). Our Python program must
print one word per line.

Problem 3.

In our Tutorial 2 Problem 8, we discovered that the function below only looks at the first letter
in s and either returns True if this letter is a lowercase letter, or False otherwise.

In this problem, we are asked to rewrite the following function considering all the good
programming style guidelines (GPS) we have seen this semester (have a look at the GPS web
page on our course web site). Amongst other things, this signifies that we need to rewrite the
function such that it has only 1 single return statement (at the end of the function body). We
are also asked to fix it such that it actually does check whether a string contains any lowercase
letters (this, after all, is its purpose).

What kind of pre-condition can we add to this function? A pre-condition is a condition that
must be true before the function is called. Often, pre-conditions are about the state of a
function’s parameters. So, what must always be true about this function’s parameter in order
for this function to function .

Problem 4.

From page 75 of our online textbook:

This pattern of computation, i.e., traversing a sequence and returning when we find what we
are looking for, is called a search. We have seen 2 searching algorithms this semester. Which
searching algorithm does the above function find() implement?

Why is find() seen as the opposite of the indexing [] operator? To understand this
question and hence to answer it, we may want to explain to ourselves what find() does
and what the indexing [] operator does. As we do so, the answer will become obvious!

Let’s rewrite the above function such that it uses the more appropriate for loop. Why is the
for loop more appropriate than the while loop in the above function?

Let’s modify the find() once again (the one with the for loop) such that it has only one

return statement (the one at the end of the function body).

Let’s modify the find() one more time (the one with the for loop and 1 return
statement) by adding a third parameter, namely the index in word where it should start
searching. Let’s make sure we use a descriptive name when we name this 3rd parameter.

Problem 5.

Problem 7.2 at page 69 of our online textbook:

For example, if the user enters “45 + 98” at the prompt the input(…) function prints on
the screen, this input(…) function returns “45 + 98” as the resulting string, which our
function could assigns to a variable called resultingString. Then our function calls

eval(resultingString) and prints its result, i.e., 143 on the computer monitor
screen.

Let’s make sure that our Python program, containing our function eval_loop() is robust,
i.e., it does not crash if the user enters a nonsensical equation or nothing at all.

Problem 6.

Build test cases need to completely test the function eval_loop() we created in the Problem
5. Let’s make sure our text cases have 2 sections: a “Test Data” section and an “Expected Results”
section.

Remember: To completely test means that all statements of our Python code fragment have been
executed, i.e., tested by all our test cases. This does not mean that each test case executes all the
statements. That would be impossible. It means that once all the test cases have been used to test our
Python code fragment, they have execute all its statements.

Problem 7.

From our online textbook:

And returns count to the caller (the code that called our function).

As a second exercise, rewrite the function so that instead of traversing the string, it calls the
“three parameter” version of find() from our Problem 4.

Problem 8 - Challenge.

What is the time efficiency of each of the following Python code fragments. Express this time
efficiency using one of the Big O notations seen in class (using one Big O notation per Python
code fragment). The critical operation is “+”, i.e., the addition.

a) y = y + 1000

b) for each in range(n)
 x = x + y

 y = y + 1000

c) count = 0
for each in range(n)

 count = count + 10

for each in range(n)

 count = count + each

d) count = 0
for each in range(n)

 for element in range(n)

 count = count + 10

