
CMPT 120, Summer 2018 Page 1 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

Simon Fraser University
School of Computing Science

Lab Week 10

(No submission required for this lab.)

Objective

In this week’s lab, our objective is to understand and practise recursion.

Notes

1. For this lab, you are free to work on our own or with a partner.

2. This is a long lab. If you do not have enough time to finish these lab exercises

within our lab session, no problem! You can finish the lab on our own outside the

lab session either

a. by coming back to CSIL and using a CSIL workstation in a lab room where there

is no scheduled lab taking place, or

b. by using our own computer at home or on campus or elsewhere.

3. Let’s make sure we show our work to one of the TA’s in the lab to ensure we

understand the concepts (see Objectives above) exercised in this lab

Lab Prep

Once we have logged into a CSIL Windows workstation, let’s access our U:

drive/CMPT120 and create a directory called Lab7. Let’s store any files we create as part

of this lab into this directory.

In all the exercises of this lab, feel free to use the visualizer (see its link on the Home page of our

course web, week 8) to view the execution flow as it executes our functions.

CMPT 120, Summer 2018 Page 2 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

Exercise 1 – Recursion

1. a) Download the program Multiplication_by_Recursive_Addition.py which we

find under the Example/Files/Feedback column of the Labs and Tutorials

page on our course web site.

 i. Let’s figure out how its recursive function works by executing the program

and observing the stack frames produced by this execution and the

program’s output. What are the base cases? What is the recursive case?

 ii. We may also want to have a look at Multiplication_by_Iterative_Addition.py and

compare and contrast both ways (recursive and iterative) of implementing

multiplication.

b) Download the program ReverseString.py (or ReverseStringV.py), which we

find under the Example/Files/Feedback column of the Labs and Tutorials

page on our course web site.

 i. Let’s figure out how its recursive function works by executing the program

and observing the stack frames produced by this execution and the

program’s output. What is the base case? What is the recursive case?

 ii. Write a second function called ReverseStringIteratively() and add it to this

program. This function must reverse a string in an iterative fashion, i.e.,

using a loop as opposed to using recursion. Let’s make sure we test it

completely. This means that we use a sufficient number of test cases such

that all its statements are executed (i.e., tested).

2. Consider the following Python program:

def magic(aNumber, aSymbol):
 print(aSymbol * aNumber)
 if aNumber > 1 :
 magic(aNumber-1, aSymbol)

 print(aSymbol * aNumber)
 return

Main part of the program

CMPT 120, Summer 2018 Page 3 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

magic(6, "*")
print("Wow!")

a) What is its base case? What is its recursive case?

b) How many times is the function magic() called? In order to answer this

question, box trace the execution of this program (i.e., hand trace the

execution of this recursive function by drawing boxes, where each box

represent the stack frame assigned to each execution of the function – as we

have done in class).

3. Modify the above Python program such that its function is as general as possible.

To figure how to do this, have a look at the following two Sample Runs, which

represent output our function, once modified, will be able to produce. The

function must remain recursive:

Sample Run 1:

**

*

 <- this is a blank line (a printed line with no characters)

*

**

Wow!

Sample Run 2:

@@@@@@@@

@@@@@@@

@@@@@@

@@@@@

@@@@

@@@

@@

@@@

@@@@

@@@@@

CMPT 120, Summer 2018 Page 4 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

@@@@@@

@@@@@@@

@@@@@@@@

Wow!

4. Consider the following Python program:

def magic(aNumber, aSymbol, end):

 print(aSymbol * aNumber)

 if aNumber <= end :

 magic(aNumber+1, aSymbol, end)

 print(aSymbol * aNumber)

 return

Main part of the program

magic(3, "*", 7)

print("Wow!")

a) What is its base case? What is its recursive case? What is the difference

between the base case and recursive case of this functionmagic() and the

base case and recursive case of the function magic() in Problem 2 above?

b) How many times is the function magic() in the above program called? In

order to answer this question, box trace its execution.

c) What happens when we call magic() with the argument 10 instead of 3.

5. a) Modify the above Python program such that when we execute it, it now

produces the following output and its function is still recursive:

*

**

Wow!

CMPT 120, Summer 2018 Page 5 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

5. b) Modify the above Python program once again such that when we execute it, it

now produces the following output and its function is still recursive:

**

*

Wow!

6. Write a Python program, containing a recursive function, that produces the

following output:

*!

**!!

***!!!

****!!!!

*****!!!!!

******!!!!!!

*******!!!!!!!

********!!!!!!!!

*********!!!!!!!!!

********!!!!!!!!

*******!!!!!!!

******!!!!!!

*****!!!!!

****!!!!

***!!!

**!!

*!

Wow!

Let’s make this function as general as we can.

7. What does the following Python function do?

def fun(aString):

 if len(aString) == 1 :

CMPT 120, Summer 2018 Page 6 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

 if aString.isdigit():

 result = int(aString)

 else:

 result = 0

 else:

 if aString[0].isdigit():

 result = int(aString [0]) + fun(aString[1:])

 else:

 result = fun(aString[1:])

 return result

In order to answer this question:

a) Box trace the execution of the function when we call it with aString =

"a3c2$".

b) Create a Python program by copying and pasting the function above and

adding a # Main part of the program section to it. This # Main

part of the program section must contain statements that test the

above function by calling it using the following three test data:

1. aString is assigned the value "358",

2. aString is assigned the value "abc" and

3. aString is assigned the value "a3c2$".

8. Let’s write a recursive function that reverses a list. It will be helpful if we first

figure out how to define a list recursively.

Also, let’s write the main part of the program from which we will be calling (i.e.,

testing) our functions.

9. Write a recursive function that counts how many even numbers there are in a list.

Feel free to use the recursive function fun() in the above exercise as an

inspiration. Also, let’s write the main part of the program from which we will be

calling (i.e., testing) our function.

10. Do Exercise 6.3 in Section 6.11 - Exercises from our online textbook.

CMPT 120, Summer 2018 Page 7 of 7

Adapted by Liaqat Ali in Summer 2018, from: © Anne Lavergne, 2017.

11. Write a recursive function that finds a character in a string. More specifically, our

function is to find the first occurrence of a character in a string and if it does find

it, it returns True, otherwise, it returns False. It will be helpful if we first figure out

how to define a string recursively. Also, let’s write the main part of the program

from which we will be calling (i.e., testing) our function.

Have fun!

Anne Lavergne – July 2017

