
CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 1 of 11

© Anne Lavergne, 2017.

Simon Fraser University

School of Computing Science

Lab Week 4

Objectives

In Lab 2, our objective is to practise:

1. Using Python building blocks learnt so far

2. Manipulating strings

3. Testing and debugging

4. Exploring if statements, which we shall further look at in our lectures soon.

Notes

1. For Week 4 Lab, we are free to work on our own or with a partner.

2. This lab is long. If we do not have enough time to finish the exercises within our

lab session, no problem! We can finish the lab on our own outside the lab session

either

a. by coming back to CSIL and using a CSIL workstation in a lab room where

there is no scheduled lab taking place, or

b. by using our own computer at home or on campus or elsewhere, or

c. using online repl.it.

3. Let’s make sure we show our work to one of the TA’s in the lab to ensure we

understand the concepts (see Objectives above) exercised in this lab.

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 2 of 11

© Anne Lavergne, 2017.

Lab Prep

Once we have logged into a CSIL Windows workstation, let’s access our U:

drive/CMPT120 and create a directory called Lab2. Let’s store any files we create as

part of this lab into this directory.

Exercise 1 - Playing around with Python building blocks

learnt so far

1. Let’s do Exercises 2.1 and 2.2 found in Section 2.10 of Chapter 2 - Variables,

expressions and statements of our online textbook, using the Python IDLE

Interpreter shell for both questions.

Note: For the above exercises, we are not asked to create Python

programs. In Exercise 2.1, we are asked to “play around” with

the Python IDLE Interpreter shell and notice what results we obtain,

and in Exercise 2.2, we are asked to use the Python IDLE

Interpreter shell as if it was a calculator to solve a few equations.

2. What is the difference between the 2 Python code fragments below? To answer

the question, we can either hand trace the code or we can create a Python

program using these code fragments.

Python code fragment 1:

x = 12

print("original value of x is", x)

print("x/2 =", x/2)

print("printing x again ->", x)

http://www.greenteapress.com/thinkpython2/thinkpython2.pdf

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 3 of 11

© Anne Lavergne, 2017.

Python code fragment 2:

x = 12

print("original value of x is", x)

print("x/2 =", x/2)

x = x/2

print("printing x again ->", x)

3. What do the following 2 Python code fragments produce? To answer the

question, let’s create a Python program using these code fragments and see

what they produce.

Python code fragment 1:

exchangeRate = 1.23456

print("Rounding exchangeRate %f" %exchangeRate,

"to 2 significant figures produces", round(exchangeRate,2))

Python code fragment 2:

exchangeRate = 1.23654

print("Rounding exchangeRate %f" %exchangeRate,

 "to 2 significant figures

produces", round(exchangeRate,2))

4. What happens if we use the name of a function to name a variable? Let’s try and

see:

print("round:", round)

exchangeRate = 1.23456

round = round(exchangeRate,2)

print("round: %g" %round)

Call round() again - does it work???

print(round(exchangeRate,2))



5. Our task here is to create a small Python program in which we ask the user to

enter a number of minutes. Our Python program then displays to the user the

equivalent of these minutes expressed in hours and minutes so that the number

of hours is the maximum number of hours possible, and the number of minutes is

< 60.

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 4 of 11

© Anne Lavergne, 2017.

Here are some sample runs. Hum… what is a sample run?

Definition: A sample run is the “snapshot” of what a program outputs on the

computer monitor screen as it executes along with the result it prints

on the computer monitor screen (if any) when it terminates. A sample

run also contains what the user enters (often typed in bold font and/or

underline – in the case below, the user input is in bold font and is

underlined).

When we are given sample runs in a lab exercise, in an assignment,

or in an exam question, the expectation is that we must create a

Python program that produces the exact same output as the output

represented by the sample runs if we, as user, enter the exact same

input.

Sample Run 1: (what the user has typed is bolded and underlined)

Please, enter a number of minutes? 70

The equivalent time is: 1 hour(s) and 10 minute(s)

Sample Run 2: (what the user has typed is bolded and underlined)

Please, enter a number of minutes? 121

The equivalent time is: 2 hour(s) and 1 minute(s)

Exercise 2 – Playing around with Strings

1. Let’s play around with strings. Copying the following Python code fragment into a

Python program. Execute it and observe what happens. Feel free to play around

with these Python statements by investigating what would happen if we were to

modify any of these statements this way or that way.

word = "hello"

print(word.upper())

print(word)

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 5 of 11

© Anne Lavergne, 2017.

print(word[0])

print(word[0].upper())

print(word.upper()[0])

print(word.upper()[0:2])

print(word.upper()[1:3])

aSlice = word.upper()[3:1] # What happens here?

print(aSlice)

print(word[0:10]) # What happens here?

word = word.upper()

print(word)

print(word.isalpha()) # The answer is True – why?

anotherWord = "hello * 3"

print(anotherWord)

print(anotherWord[::])

print(anotherWord[2:])

print(anotherWord[0:5])

print(anotherWord[0::2])

print(anotherWord[3:len(anotherWord)-1])

theOperation = anotherWord[6] # theOperation should

contain “*”

print(theOperation)

print(theOperation.isalpha()) # The answer is False – why?

We may want to play with the other string built-in functions and methods, which

we can find following the links in our lecture on strings.

2. Incrementally Constructing a String – Create a Python program by translating

each of the following instructions of the algorithm described below (executing the

instructions in the following order):

a) Assigns the empty string to a string variable named varS

b) Ask the user for a name

c) Concatenate the name to the string in varS

d) Print the content of the variable varS (at this point it should only contain the

name)

e) Ask the user for a number

f) Concatenate the number (which should be a string) to varS, separating the

previous content of varS from the number with a space

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 6 of 11

© Anne Lavergne, 2017.

g) Display to the user the content of the variable varS (it should now show the

name, a space and the number)

h) Ask the user for a code with special symbols

i) Concatenate this code to varS, separating the previous content of varS from

the code with a space

j) Display the content of the variable varS

Note: Incrementally or cumulatively constructing a string is a very useful process

we may encounter often while developing software.

3. Let’s play with the print() built-in function (output statement) and escape

sequences (or characters). Let’s create a Python program using the Python Code

Fragment 1 below and see what it produces.

Python Code Fragment 1:

name = "Louise MacLeavy"

income = 37500.2567

SIN = 123456789

age = 20

print("The employee record for %s

contains:\n\tSIN %i \tage %d\tsalary of $%0.2f" %(name,

SIN, age, income))

Let’s make sure we understand what is happening in the above code fragment.

Specifically, make sure we know what the following items do and why we would

use them:

 the %s, %i, %d, %f

 the \t and the \n , which are called escape sequences or escape

characters (what other escape sequences are there?)

 old string formatting mechanism: "$%0.2f" %(name, SIN, age,

income). This string formatting mechanism is sometimes referred to

as printf string formatting. It also has other names. Note that the 0in

"$%0.2f" is the number zero 0, not the capital letter O.

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 7 of 11

© Anne Lavergne, 2017.

While investigating the above, feel free to browse the Internet. Just remember to

add “Python 3” to our query as Python 2 does printing differently than Python 3.

Here is a table listing some escape sequences:

Source: https://docs.python.org/3.1/reference/lexical_analysis.html

In terms of the old string formatting, we may find the information described at

this link very useful.

Is the Python code fragment below equivalent, i.e., outputs the same result, to

the Python code fragment above?

Python Code Fragment 2:

name = "Louise MacLeavy"

income = 37500.2567

SIN = 123456789

age = 20

record = "\tSIN %i\tage %d\tsalary of $%0.2f" %(SIN, age,

income)

print("The employee record for %s contains:\n%s"

%(name,record))

https://docs.python.org/3.1/reference/lexical_analysis.html
http://www.python-course.eu/python3_formatted_output.php

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 8 of 11

© Anne Lavergne, 2017.

Once again, let’s make sure we understand what is happening in the above code

fragment.

4. Print Statement Challenge - Our task is to write a Python program that asks the

user to enter one letter, one digit and one special symbol (such as "!") using

3 separate input() statement, then, our program must …:

a) display to the user each of the three values on a separate line using as

many print() statements as needed.

Hint: string formatting.

b) display to the user the three values on the same line, each value separated

by a space, using only 1 print()statement.

Hint: concatenation operator.

c) display to the user each of the three values on a separate line using only

1 print() statement.

Hint: newline character and concatenation operator or string formatting (seen

in Problem 3 above).

d) display to the user the three values on the same line, however, there shall be

no spaces between the three values, using only 1 print() statement.

Hint: Look up the separator sep= argument to the print() built-in function.

Note: Let’s remember GPS (Good Programming Style): Let’s make sure our

variables are descriptively named, let’s create clear and unambiguous

prompts and let’s clearly label our output.

Exercise 3 – Testing and Debugging

1. Let’s have a look at this Python program (copy and paste it into a Python

Program Editor new window):

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 9 of 11

© Anne Lavergne, 2017.

CtoF.py

Celsius to Fahrenheit converter

Anne Lavergne

May 2015

print("Welcome to my Celsius to Fahrenheit converter!\n")

Get temperature from user

celsius = float(input("Please, enter a Celsius temperature:

")

Convert it to Fahrenheit

print("You have entered %0.1f celsius degrees, which is

%0.1f Fahrenheit degrees.\n" %(celsius,((celsius * 2.4) +

32)))

print("Bye!\n")

a) First, figure out what this program does? How will we be doing this? Hint:

There are at least 2 ways we can figure out what this program does.

b) As we may have noticed, it contains a syntax error. Find the syntax error and

fix it.

c) Testing

Once a program executes (i.e., is free of syntax errors), how do we test it?

How do we know when a program solves the problem?

Yes! We can enter the requested number and pressed Enter. That is

good! But, how do we know whether the output a program produces (with the

number we entered) is correct?

And how many times (i.e., with how many different input values – test data)

should we test our program? The answer is “at least once for

each category of test data. What does category of test data mean? The test

data for this program represents a Celsius temperature, which can be 0,

positive or negative. Therefore, one can consider these 3 kinds of test data as

the categories of test data. So, when creating test cases, we would select at

least one value (test data) from each of these 3 categories.

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 10 of

11

© Anne Lavergne, 2017.

Test Cases:

As seen in class, let’s come up with a few test cases. Complete the Table I

(which has already been started for us):

Test Case # Test Data Expected Results

1 0 32

2

3

To test the program, we execute it, for each execution of the program, we

enter one of the 3 test data and verify whether the program has produced

(printed on the computer monitor screen) the expected result. If

yes, youpi! and we move onto the next test data. If not, then something must

be wrong with either our calculation of the expected result for this test case or

something is wrong with the code of the program.

d) As we may have noticed, the program above does contain a semantic error.

Find the semantic error and fix it. One way to find such error is to work

backward from the print() statement that displayed the erroneous output

data on the screen, hand tracing the code of our program until we locate the

problem.

Once we have fixed the semantic error of the program, we must retest it using

all our 3 test cases all over again. Why would we need to do this?

Exercise 4 – Exploring Python Conditional Statements

1. Consider the following Python code fragment:

number = int(input("Please, enter a positive number : "))

CMPT 120, Summer 2018, Instructor: Liaqat Al1 Page 11 of

11

© Anne Lavergne, 2017.

print("You have entered : ", number)

if number < 0:

 print(" ... which is not a positive number. So ... ")

 number = 0

print("Resulting number is : ", number)

calculation = number * 10

print("Result of calculation : ", calculation)

What does the Python program above accomplish when the user enters …

a) a positive number?

b) a negative number? (Even though the user is asked to enter a positive

number.)

c) a word? (Even though the user is asked to enter a positive number.)

In order to answer the question, we need to create a Python program with the

above Python code fragment and execute it 3 times, each time entering an input

as described above in a), b) and c).

Note: The above Python program is not only an introduction to conditional

statements but also to “guardian” code (also known as “error handling” code).

More about this topic soon.

