
Part III

Appendices

165





Appendix A

Technical Instructions

Learning Outcomes

This material will help you learn how to use the software you need to do your
work in this course. You won’t be tested on it.

Learning Activities

• Install the Python software, if you’re working with your own computer.

• Follow along with the Python instructions yourself and make sure you
can work with the tools.

• Explore the software more on your own.

Topic A.1 Installing Python

We are going to use Python to write and run Python programs in this course.
The following tutorial will help you get familiar with some of the functionality
of the Python software.

This installation tutorial assumes that you’re using Windows. Python is
available for the MacOS and for Linux as well. You can use any operating
system for your work in this course. You can also use Python in a computer
lab on-campus. If you do, Python is already installed and you can skip to
the next topic.

You can download the most recent version of Python from the Python web
site, http://www.python.org/download/. Click on the link that says: “Python

167

http://www.python.org/download/


168 APPENDIX A. TECHNICAL INSTRUCTIONS

2.x.x Windows installer” (where 2.x.x is the most recent release of version
2). Save this file on your desktop.

Do not download Python 3: it contains some incompatibilities that this
Guide (and most other Python tutorials) do not take into account. For the
a Macintosh, download the 32-bit version of Python, not the 64-bit version.

Once the file has downloaded, double-click the installation file. You can
safely accept all of the defaults for the installation. Make sure you install at
least the “Python interpreter and libraries” and “Tck/Tk”. You will need
those for this course. You will probably want the help files as well.

You can delete the installation file you downloaded once the installation
is complete.

Topic A.2 Using Python

There are two different interfaces where you can write Python code: IDLE

(Integrated DeveLopment Environment) or the Command Line. We will use
IDLE in this course since it provides a graphical interface for you to work
with. You can start IDLE by selecting “IDLE (Python GUI)” from the Start
menu if you’re using Windows.

Note that in this sections, the screen shots are from Windows, but the
instructions apply to any operating system.

The usual first program that’s written in every programming language is
one that prints “Hello World” on the screen. Let’s see how we can keep up
the old tradition in Python. Open up the IDLE if you haven’t already. Your
IDLE window will have some text similar to this:

Python 2.3.4 (#53, May 25 2004, 21:17:02) [MSC v.1200 32

bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more

information.

IDLE 1.0.3

>>>

The >>> at the bottom is the prompt for writing the statements. When
you open up IDLE, your cursor should by default be in front of this prompt.
Type in the following statement in IDLE:

print "Hello World!"



A.2. USING PYTHON 169

Figure A.1: IDLE, after running a “Hello World” statement

You have just executed your first Python statement and your IDLE window
should look like Figure A.1.

Your first Python program

Typing statements in the IDLE environment isn’t the only way to execute
Python statements. You can make programs, store them and run them later.
These programs are also called script files and are usually saved with a .py
extension. Let’s make a simple script and run it. Select “New Window” from
the File menu in IDLE. An editor window will appear on your screen.

Type the same statement as you did in the IDLE earlier:

print "Hello World!"

Select the “Save As. . . ” option from the File menu and save the program as
HelloWorld.py . Don’t forget the .py extension.

Now run this script file. The easiest way to run and debug your script file
is to press F5 while your script file’s editor window. The script file should
run in the main IDLE window, displaying its output below the other output
that previous commands have created.

If you change your script file and try to run it, you will be asked if you
want to save your file—you must save the program before it can be run.
Change the “Hello World” program that you just made: add the following
print statement after the first one:

print "This is going to be fun!"



170 APPENDIX A. TECHNICAL INSTRUCTIONS

Figure A.2: IDLE, displaying a syntax error

Press F5 now. The following window will appear asking you to save the
source first. Click on OK and the IDLE will display the out put of your
script file.

If there are any syntax errors in your script file, those are identified auto-
matically before the file is run. For example, in Figure A.2 an error message
popped up when F5 was pressed. The error here is the incorrect indenting of
the second print statement—the cursor is moved the the interpreter’s best
guess at the location of the error. Indentation plays a vital role in Python
programming. You will learn more about this as you proceed in the course.

Once any syntax errors are fixed, the script will run. There might be
more errors that the interpreter can’t catch until its running the program.
For example, in Figure A.3, the interpreter has caught an error. When it got
to the word squidport, it didn’t know what to do with it. It can’t catch
this any earlier since you might have created a variable or function called
squidport; the only way to tell for the computer to tell for sure was to run
it and see.

The error message indicates that it noticed the error on line 3 of the
current program (“-toplevel-”). The IDLE editor tells you the line number
that the cursor’s on in the bottom left corner. In Figure A.3, “Ln: 4”
indicates that the cursor is on line 4, just below the error. The “Ln: 21”
in the interpreter window isn’t what we’re interested in: the error message



A.3. COMPUTING ACCOUNTS 171

Figure A.3: IDLE, displaying a run-time error

always gives lines in the source file.

Remember: if you want to save the program so you can run it later
(or hand it in), it has to go in an editor window, not at the IDLE
>>> prompt.

Topic A.3 Computing Accounts

There are several username/password combinations you need for this course.
Hopefully, this will help you keep them straight. All of the accounts have
the same user names, but different passwords.

• SFU Computing Account: This account is the one that all SFU
students (and faculty and staff) get. It is used to retrieve your @sfu.
ca email. All email sent to the course email list will go to this address
(unless you have forwarded it elsewhere). This account is also used for
Caucus, WebCT, and many other computing resources on-campus.

You activate this account, go to my.sfu.ca and click the “Apply for ID”
link. You need to enter your student number and some other personal
information. You should contact the ACS Help Desk for problems with
this account.

@sfu.ca
@sfu.ca
my.sfu.ca


172 APPENDIX A. TECHNICAL INSTRUCTIONS

• Gradebook Account: This account is used to access Gradebook
(http://gradebook.cs.sfu.ca). Gradebook will be used to check your
marks on assignments and exams. Your Gradebook password is also
needed to access some parts of the course web site. Gradebook is gen-
erally activated in the second week of the semester.

This account is also used for the submission server, which is used to
submit your work on assignments.

Your initial password in Gradebook will be your student number (with
no spaces or punctuation). If you have used Gradebook before, you
password will be the same. If you have problems with your password,
the instructor and TAs can reset it to your student number.

• ACS Lab Account: This account is used to access the computers in
any of the ACS labs on campus. You can do your work for this course
in these labs if you wish.

Your password on this account is the same as your SFU Computing
Account. If you have a new account, you should be able to log in with
no problem. If your account is older, you will have to synchronize your
Active Directory password. This is a one time process and can be done
on the web. You can contact the ACS Help Desk for problems with
this account.

More information on using the labs is available from the course web
site.

• CSIL Lab Account: This account is used to access the computers
in the CSIL labs, which are run by the School of Computing Science.
You can do your work for this course in these labs if you wish.

Your password on this account is the same as your SFU Computing
Account. You will need an access card to get in the door; you can get
the access card by the second week of classes at the Security office.

Topic A.4 Working in the Lab

All of the software you need in this course is installed in both the ACS labs
and the CSIL lab. You can access both and can work in either (or on your
own computer is you prefer).

http://gradebook.cs.sfu.ca


A.4. WORKING IN THE LAB 173

See the course web site for more information about using the labs.

Summary

This material will help you learn how to use the software you need to do your
work in this course. You won’t be tested on it.

If there are any updates to this material, they will be posted on the course
web site or sent by email.



Index

==, 58
>>>, 30

in docstrings, 96
#, 69
%, 83
\, 50

algorithm, 20
Algorithms, 123 (unit)
Aliases, 119 (subtopic)
Another Example, 140 (subtopic)
append method, 110
argument, 34

optional, 34
arguments, 90
ASCII, 47
assignment

to an element, 109

base 10 arithmetic, 43
base 2 arithmetic, 43
base case, 134
Binary, 41 (subtopic)
binary, 41, 43
Binary Conversion, 84 (subtopic)
Binary Search, 125 (subtopic)
binary search, 126
bit, 42
body, 56, 57

Boolean Expressions, 58
(subtopic)

boolean expressions, 58
boolean values, 58
bugs, 77
byte, 42

C++, 25
called, 90
Calling Functions, 91 (subtopic)
capacitors, 41
ceiling, 71
character, 46
character set, 47
characters, 30
Characters and Strings, 46

(subtopic)
Choosing Control Structures, 63

(topic)
class, 99
clause

elif, 59
else, 59

cloning, 120
code, 25
Coding Style, 80 (topic)
Combine the Base and Recursive

Cases, 137 (subtopic)
comma-separated value, 149
Comments, 80 (subtopic)

174



INDEX 175

comments, 69
compact disc, 156
computer program, 25
computer programming, 25
computer science, 22
Computing Accounts, 171 (topic)
computing science, 19, 22
Computing Science Basics, 19

(unit)
concatenate, 39, 108
condition, 57
constructor, 99
Control Structures, 55 (unit)
CSV, 149

Data Structures, 21 (subtopic),
107 (unit)

data structures, 21
Debugging, 77 (topic)
Debugging Recursion, 138

(subtopic)
decimal, 43
default value, 34
Defining Functions, 89 (topic)
Defining your own functions, 90

(subtopic)
Definite Iteration: for loops, 59

(topic)
definite loops, 60
defragment, 157
del statement, 110
delete

list element, 110
delimiter, 152
depth

of recursion, 137
Designing with Recursion, 135

(topic)

device drivers, 155
digital camera, 156
disk, 156
disk blocks, 157
Disks and Files, 155 (topic)
docstring, 91, 96
doctest module, 96
documentation string, 91, 96
Doing Calculations, 32 (topic)

element assignment, 109
elif clause, 59
else clause, 59
else clause, 59 (subtopic)
empty string, 51
escaping a character, 51
Example Problem Solving: Feet

and Inches, 48 (topic)
Example Problem Solving: File

Statistics, 158 (topic)
Example Problem Solving:

Guessing Game, 65 (topic)
Example: Repeated letters with

sorting, 128 (subtopic)
exceptions, 102
expression, 32
external fragmentation, 157

factorial, 131
factorials, 60
File Input, 150 (topic)
file object, 148
File Output, 147 (topic)
file system, 156
Find a Base Case, 136 (subtopic)
Find a Smaller Subproblem, 135

(subtopic)
Finding bugs, 79 (subtopic)



176 INDEX

flash media cards, 156
float, 38
floating point, 37
floor, 26
floppy disk, 156
for, 60
for loop, 60 (subtopic)
fragmentation

external, 157
internal, 157

Functions, 34 (subtopic)
functions

arguments, 90
return values, 90

Functions and Decomposition, 89
(unit)

Getting it right the first time, 78
(subtopic)

halting problem, 142
Handling Errors, 102 (topic)
hard drive, 156
How Computers Represent

Information, 41 (topic)
How It Works, 133 (subtopic)
How to sort, 129 (subtopic)

IDLE, 31, 168
if condition, 57
if statement, 56 (subtopic)
immutable, 117
implementation, 25
imports, 97
in-place, 116
Indefinite Iteration: while loops,

62 (topic)
infinite loop, 63
infinite recursion, 137

Installing Python, 167 (topic)
instance, 99
int, 38
integers, 37
interactive interpreter, 30
internal fragmentation, 157
interpreter, 30

Java, 25

len, 34
libraries, 97
Linear Search, 124 (subtopic)
linear search, 124
Lists, 107 (topic)
Lists and for loops, 111 (topic)
Lists are different from strings,

109 (subtopic)
Lists are like strings, 108

(subtopic)
local variable, 94

Making Decisions, 55 (topic)
Manipulating Slices, 114

(subtopic)
mergesort, 130
method, 99
module, 97
More About Algorithms, 84

(topic)
MP3 player, 156
Mutability, 115 (topic)
mutable, 117

NameError, 67, 94
newline character, 148
nonvolatile storage, 156
Number of “Steps”, 76 (subtopic)

Objects, 98 (topic)



INDEX 177

Objects in Python, 99 (subtopic)
opening a file, 148
operating system, 154
operators, 32
optional argument, 34
overflow, 46

Positive and Negative Integers, 44
(subtopic)

print statement, 30
Processing File Input, 151

(subtopic)
Programming Basics, 29 (unit)
programming language, 25
prompt, 30
property, 99
Pseudocode, 26 (topic)
pseudocode, 26
Python, 25, 29

interpreter, 30
Python errors

Name Error, 94
Python Modules, 97 (topic)

quicksort, 130
quotes, 33

printing, 51–52

read head, 157
Really Copying, 120 (subtopic)
Recommended Texts, 12

(subtopic)
Recursion, 131 (topic)
recursion

depth, 137
References, 117 (topic)
Repeated Letters, 72 (subtopic)
return, 90
return statement, 91

return value, 34
round, 34
rstrip string method, 152
Running Time, 70 (topic)

Searching, 123 (topic)
selection sort, 130
sequence types, 114
slicing, 112

manipulating slices, 114
strings, 115

Slicing and Dicing, 112 (topic)
Slicing Strings, 115 (subtopic)
So?, 86 (subtopic)
Sorting, 126 (topic)
Special Slice Positions, 113

(subtopic)
split string method, 152
Starting with Python, 29 (topic)
statement

print, 30
variable assignment, 36

Statements, 31 (subtopic)
Storing Information, 35 (topic)
string, 30, 37, 46

empty, 51
triple-quoted, 52

string subscripting, 72
Strings, 114 (topic)
subscript, 108
Subset Sum, 74 (subtopic)
Summary, 76 (subtopic), 82

(subtopic)

Technical Instructions, 167 (unit)
text editor, 147
text files, 147
The Code Itself, 81 (subtopic)



178 INDEX

The Guessing Game, 70 (subtopic)
The Halting Problem, 142

(subtopic)
The Interpreter vs. the Editor, 31

(subtopic)
The Operating System, 154

(topic)
triple-quoted string, 52
two’s complement notation, 44
Type Conversion, 38 (subtopic)
TypeError, 37
Types, 36 (topic)

Understanding Recursion, 134
(subtopic)

Unicode, 47
unsigned integer, 45
Unsigned Integers, 43 (subtopic)
USB “disks”, 156
Use the Recursive Solution to the

Subproblem, 135
(subtopic)

User Input, 40 (topic)
Using Python, 168 (topic)

variable, 35
variable assignment statement, 36
Variable Scope, 94 (topic)
virus, 144
Virus Checking, 144 (subtopic)

What is an Algorithm?, 19 (topic)
What is Computing Science?, 22

(topic)
What is Programming?, 25 (topic)
What isn’t computable?, 142

(topic)
Why Python?, 25 (subtopic)

Why Use Functions?, 93
(subtopic), 96 (subtopic)

Working in the Lab, 172 (topic)
Working with Files, 147 (unit)

Your first Python program, 169
(subtopic)


