
Unit 3

Control Structures

Learning Outcomes

• Design algorithms that use decision making and implement them in
Python.

• Design algorithms that use iteration and implement them in Python.

• Given an algorithm, approximate its running time.

• Find and fix bugs in small programs.

• Create algorithms for more complex problems.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Sections 4.2–4.7, 6.2–6.4, 1.3, Appendix A in How to Think Like

a Computer Scientist.

Topic 3.1 Making Decisions

All of the code we have written so far has been pretty simple. It all runs
from top to bottom, and every line executes once as it goes by. The process
soon becomes boring. It’s also not very useful.

55

56 UNIT 3. CONTROL STRUCTURES

write “Think of a number between 1 and 10.”
set guess to 6.
write “Is your number equal to guess?”
read answer
if answer is “yes”, then

write “I got it right!”

if answer isn’t “yes”, then

write “Nuts.”

write “That’s the end of the game.”

Figure 3.1: Simplified guessing game

In the guessing game example from Figure 1.3, we need to decide if the
user has guessed correctly or not and then take the appropriate action. Al-
most every program you write to solve a real problem is going to need to do
this kind of thing.

There are a few ways to make decisions in Python. We’ll only explore
one of them here.

The if statement

The most common way to make decisions in Python is by using the if

statement. The if statement lets you ask if some condition is true. If it is,
the body of the if will be executed.

For example, let’s simplify the guessing game example from Figure 1.3.
In the simplified version, the user things of a number from 1 to 10 and
the computer only takes one guess. Pseudocode for this game is shown in
Figure 3.1.

Some Python code that implements Figure 3.1 can be found in Figure 3.2.
Here are two example executions of the program:

Think of a number between 1 and 10.

Is your number equal to 6? no

Nuts.

That’s the end of the game.

Think of a number between 1 and 10.

Is your number equal to 6? yes

3.1. MAKING DECISIONS 57

print "Think of a number between 1 and 10."

guess = 6

answer = raw_input("Is your number equal to " \

+ str(guess) + "? ")

if answer == "yes":

print "I got it right!"

if answer != "yes":

print "Nuts."

print "That’s the end of the game."

Figure 3.2: Implementation of Figure 3.1

I got it right!

That’s the end of the game.

As you can see from these examples, only one of the print statements
inside of the if is executed. The if statement is used to make a decision
about whether or not some code should be executed.

The condition is used to decide what to do. The two conditions in Fig-
ure 3.2 are answer == "yes" and answer != "yes". These mean “answer
is equal to yes” and “answer is not equal to yes,” respectively. We will look
more at how to construct conditions later.

The indented print statements are not executed when the if condition
is false. These statements make up the body of each if statement. The last
print is executed no matter what: it isn’t part of the if.

In Python (unlike many programming languages), the amount of space
you use is important. The only way you can indicate what statements are
part of the if body is by indenting, which means you’ll have to be careful
about spacing in your program.

All block statements in Python (we’ll be seeing more later) are indented
the same way. You start the block and then everything that’s indented after
it is the body of the block. When you stop indenting, the block is over.

How much you indent is up to you, but you have to be consistent. Most
Python programmers indent 4 spaces and all of the example code for this
course is written that way.

58 UNIT 3. CONTROL STRUCTURES

Boolean Expressions

The expressions that are used for if conditions must be either true or false.
In Figure 3.2, the first condition is answer == "yes" , and it evaluates to
true when the value stored in answer is "yes".

These conditions are called boolean expressions. The two boolean values

are True and False. A boolean expression is any expression that evaluates
to true or false.

To check to see if two values are equal, the == operator is used and != is
the not equal operator.

>>> if 4-1==3:

print "Yes"

Yes

You have to press an extra Enter in this example after the print

statement. In the Python interpreter, the extra blank line is used
to tell it you’re done the block.

The less than sign (<) and greater than sign (>) do just what you’d expect.
For <, if the left operand is less than the right operand, it returns true. There
are also boolean operators less than or equal (<=), and greater than or equal
(>=).

Note the difference between = and ==. The = is used for variable assign-
ment; you’re telling Python to put a value into a variable. The == is used
for comparison—you’re asking Python a question about the two operands.
Python won’t let you accidentally use a = as part of a boolean expression,
for this reason.

Functions and methods can also return True or False. For example,
strings have a method islower that returns True if all of the characters in
the string are lower case (or not letters):

>>> s="Hans"

>>> s.islower()

False

>>> s="hans"

>>> s.islower()

True

3.2. DEFINITE ITERATION: FOR LOOPS 59

The else clause

In Figure 3.2, we wanted to take one action if the user answered "yes" and
another if they answered anything else. It could also have been written in
the following way:

if answer == "yes":

print "I got it right!"

else:

print "Nuts."

The else clause is executed if the if condition is not true.
In the if statement, you can specify an else clause. The purpose of the

else is to give an “if not” block of code. The else code is executed if the
condition in the if is false.

It is also possible to allow more possibilities with elif blocks. The elif
is used as an “else if” option. In Figure 3.2, we could have done something
like this:

if answer == "yes":

print "I got it right!"

elif answer == "no":

print "Nuts."

else:

print "You must answer ’yes’ or ’no’."

Here, the logic of the program changes a little. They have to answer “yes”
or “no”. If they answer anything else, they get an error message.

Any number of elifs can be inserted to allow for many possibilities.
Whenever an if. . . elif. . . elif. . . else structure is used, only one of the
code bodies will be executed. The else will only execute if none of the
conditions are true.

Topic 3.2 Definite Iteration: for loops

We are still missing one major concept in computer programming. We need
to be able to execute the same code several times (iterate). There are several
ways to iterate in most programming languages. We will discuss two ways
you can use in Python: for and while loops.

60 UNIT 3. CONTROL STRUCTURES

write “Enter a nonnegative integer:”
read n
set factorial to 1
do this for i equal to each number from 1 to n:

set factorial to factorial × i

write factorial

Figure 3.3: Pseudocode to calculate factorials

num = int(raw_input("How high should I count? "))

for i in range(num):

print i,

Figure 3.4: Using a for loop in Python

The for loop

In some problems, you know ahead of time how many times you want to
execute some code. For example, suppose we want to calculate factorials. If
you haven’t run across factorials before, “n factorial” is written “n!” and is
the product of all of the number from 1 to n:

n! = 1× 2× 3× · · · × (n− 1)× n .

We can write a program to calculate factorials and we’ll know that we
have to do n multiplications. Figure 3.3 contains pseudocode to calculate
factorials.

In Python, if you have a problem like this where you know before you
start iterating how many times you’ll have to loop, you can use a for loop.

Loops where you know how many times you’re going to loop when
you start are called definite loops. Well, they are in textbooks. Ev-
erybody else just calls them “for loops”. Isn’t Computing Science
fun?

Before we try to implement a factorial program from Figure 3.3, let’s
explore the for loop a little. The program in Figure 3.4 uses a for loop to
count as high as the user asks.

3.2. DEFINITE ITERATION: FOR LOOPS 61

n = int(raw_input("Enter a nonnegative integer: "))

factorial = 1

for i in range(n):

factorial = factorial * (i+1)

print factorial

Figure 3.5: Calculating factorials with Python

The easiest way to construct a for loop is with the range function. When
a for loop is given range(x), the loop body will execute x times. Figure 3.4
will look like this when it’s executed:

How high should I count? 12

0 1 2 3 4 5 6 7 8 9 10 11

Notice that the range starts from zero and counts up to num − 1. If we
wanted to count from one, we could have written the loop like this:

for i in range(num):

print i+1,

We will have to do this when implementing the factorial algorithm since we
need the values from 1 to n, not from 0 to n− 1.

Here are the details of what happens when that loop runs: The given
range, range(num), will cause the loop to repeat num times; the range rep-
resents the integers 0, 1, 2, . . . , num-1. The loop variable (i) will be set to
the first value in the range (0), and the loop body (the print statement) is
executed. The body is then repeated for each of the other values in the range
(1, 2, . . . , num-1).

Figure 3.5 contains a program program that calculates n! .

For some strange historical reason, i is a common choice for the
for loop variable if nothing else is appropriate. You should choose
a descriptive variable name where possible, but for quick, short
loops, i is a good default.

62 UNIT 3. CONTROL STRUCTURES

name = raw_input("What is your name? ")

while name=="":

name = raw_input("Please enter your name: ")

print "Hello, " + name

Figure 3.6: Using a while loop in Python

Topic 3.3 Indefinite Iteration: while loops

If you don’t know how many times you want the loop body to execute,
the for loop is hard to work with. For example, in the guessing game in
Figure 1.3, we just have to keep guessing until we get it right. That could be
anywhere from 1 to 7 guesses. We will finally implement the guessing game
in Topic 3.5.

In Python, you can do this with a while loop. To construct a while loop,
you use a condition as you did in a if statement. The body of the loop will
execute as many times as necessary until the condition becomes false.

For example, the program in Figure 3.6 will ask the user to enter his or
her name. If a user just presses enter, the program will keep asking until the
user provides a response. It looks like this when it’s executed:

What is your name?

Please enter your name:

Please enter your name:

Please enter your name: Sherri

Hello, Sherri

When the while loop runs, these steps are repeated:

1. Check the value of the loop condition. If it’s False, the loop exits, and
the program moves on to the following code.

2. Run the loop body.

Basically, the while loop uses its condition to ask “should I keep going?” If
so, it runs the loop once more and asks again.

3.4. CHOOSING CONTROL STRUCTURES 63

When you use an indefinite loop, you have to make sure that the loop
condition eventually becomes false. If not, your program will just sit there
looping forever. This is called an infinite loop.

You’ll write an infinite loop sooner or later. Press control-C to stop
the Python interpreter when you get tired of waiting for infinity.

Topic 3.4 Choosing Control Structures

When you’re starting to program, you may find it difficult to decide which
control structure(s) to use to get a particular result. This is something that
takes practice and experience programming. Once you figure out how to
really work with these control structures, it become easier.

There aren’t any rigid rules here. There are often many ways to do the
same thing in a program, especially as things get more complicated. Below
are a few guidelines.

Before you can choose a control structure, you need to have a pretty good
idea what you want the computer to do: you need to have an algorithm in
mind. Once you do, you can then think about how to get a program to do
what you want.

• Just do it. Remember that most statements in Python (and most other
programming languages) are executed in the order that they appear.
So, a variable assignment, or print statement will execute right after
the statement before (unless a control structure changes how things
run).

These statements tell the computer what you want to do. The control
structures let you express when it will happen. (Sort of. Don’t take
that too literally.)

• Maybe do it. If you have some code that you want to execute only in a
particular situation, then a conditional (if statement) is appropriate.
An if will run its body zero times or one time. If you need to do
similar things more than once, you should be looking at a loop.

If the logic you need is “either this or that,” then you should use if

with an else clause. If you need to do “one of these things,” then use
the if. . . elif. . . elif. . . else form.

64 UNIT 3. CONTROL STRUCTURES

In any of these cases, you need to come up with a boolean expression
that describes when it’s appropriate to do each case. This again takes
practice. The goal is to use the variables you have and the boolean
operators to come up with something that is true exactly when you
want the code to run.

• Do it several times. When you need to do something several times,
you need a loop. Remember that the loops can execute zero, one, or
more times, depending on exactly how you’ve expressed things (and
the values of variables, and what the use types, and so on).

Note that the task done in the body of the loop doesn’t have to be
exactly the same every time through. You can use the loop variable
(in a for loop) and any other variables in your program to keep track
of what should be done this time through the loop. For example, you
might want to examine the loop variable to see if it has a particular
property and print it to the screen if it does. To do this, you would
use a if statement in the loop, and write a condition that expresses
the property you’re looking for.

• Do it this many times. If you know when you start the loop how many
times it will run (for example, count up to a certain number, or run
once for every item in a collection), you can use a for loop.

For now, all of our for loops will loop over a range of numbers. In
Topic 5.2, you will see that for can be used to loop over other items.

Note that you don’t need to know how many times you’ll loop when
you’re writing the program. The size of the range can be an expression
that’s calculated from user input, or anything else. You just need to
be able to figure this out when the program gets to the for loop.

If you do a calculation and end up looping over range(0), the body of
the for loop will run zero times.

• Do it until it’s done. There are often situations when you can’t tell how
many times to loop until you notice that you’re done. These are usually
of the form “keep doing this until you’re done; you’re done when this

happens.”

In these cases, you probably need a while loop. A while loop is similar
to an if in that you need to write a boolean expression that describes

3.5. EXAMPLE PROBLEM SOLVING: GUESSING GAME 65

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

guess = (smallest + largest) / 2

print "My first guess is " + str(guess) + "."

Figure 3.7: Guessing game: first guess

when to “go”. Unlike a if, a while loop will execute the body repeat-
edly, until its condition is false.

When writing the condition for a while loop, you need to figure out
how the computer will determine that you still have more work to do
before the loop is finished. Often, this is “I need to take another step
if. . . ”. The body of the while is then the code necessary to do a “step”.

Once again, finding the control structure to express what you want to do
does take some practice, and there aren’t really any rules. But, hopefully
the above will give you something to start with.

Topic 3.5 Example Problem Solving:

Guessing Game

In Unit 1, we introduced the guessing game algorithm. It guessed a number
from 1 to 100 that the user was thinking. Working from the pseudocode
in Figure 1.3, we now have all of the tools we need to write a program
implementing this algorithm.

As we saw in the first problem solving example in Topic 2.7, you shouldn’t
try to write the whole program at once and just hope it will work. You should
test as you write.

The program in Figure 3.7 starts the game and makes the first guess.
This will let us test the expression to calculate guess first. We can change
the initial values for smallest and largest and make sure guess is always
halfway between.

Now that we can make one guess, we can combine this with an if state-
ment to ask the user whether or not we’re right. This is similar to Figure 3.2.
This is done in Figure 3.8.

66 UNIT 3. CONTROL STRUCTURES

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print smallest, largest

Figure 3.8: Guessing game: get an answer

We can check this program and make sure our logic is right. Have we
accidentally interchanged what should be done in the two cases? Suppose
we’re thinking of 80:

Think of a number from 1 to 100.

Is your number ’more’, ’less’, or ’equal’ to 50? more

51 100

Now, the program will be guessing numbers from 51 to 100, which is the
right range. On the other side, if we were thinking of 43,

Think of a number from 1 to 100.

Is your number ’more’, ’less’, or ’equal’ to 50? less

1 49

Since 43 is in the range 1–49, we are still on the right track.
Now, we can put this into a loop and keep guessing until we get it right.

By directly translating out pseudocode, we would get something like Fig-
ure 3.9.

But, if you try to run this program, you’ll see an error like this:

Think of a number from 1 to 100.

Traceback (most recent call last):

File "C:/Python23/guess3.py", line 4, in -toplevel-

while answer != "equal":

NameError: name ’answer’ is not defined

3.5. EXAMPLE PROBLEM SOLVING: GUESSING GAME 67

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

while answer != "equal":

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print smallest, largest

print "I got it!"

Figure 3.9: Guessing game: trying a loop

This happens because we have tried to use the value in the variable answer
before ever putting anything into it. In Python, variables don’t exist until
you put a value in them with a variables assignment, using =. So, when we
try to use the value in answer in the while loop’s condition, the variable
doesn’t exist. Python doesn’t have anything to use with the name answer

so it generates a NameError.

This is a good example of problems that can come up when translating
pseudocode into a programming language. There isn’t always a nice, neat
translation; you have to work with the language you’re writing your program
in. This is also part of the reason it’s a good idea to write pseudocode in the
first place: it’s easier to work out the algorithm without fighting with the
programming language.

In order to get around this, we have to get something in the variable
answer before we try to use its value. We could copy the two statements
that assign values to guess and answer outside of the loop, but that could
be a little hard to work with later: if we have to fix the code, we have to fix
two things instead of one.

The easiest thing to do is just put a dummy value in answer so the
variable exists, but we’re still sure the condition is false. This has been done

68 UNIT 3. CONTROL STRUCTURES

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

answer = ""

while answer != "equal":

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print smallest, largest

print "I got it!"

Figure 3.10: Guessing game: a working loop

in Figure 3.10.

Let’s try this program. Suppose we’re thinking of the number 43 and
play the game:

Think of a number from 1 to 100.

Is your number ’more’, ’less’, or ’equal’ to 50? less

1 49

Is your number ’more’, ’less’, or ’equal’ to 25? more

26 49

Is your number ’more’, ’less’, or ’equal’ to 37? more

38 49

Is your number ’more’, ’less’, or ’equal’ to 43? equal

38 49

I got it!

There is still some extra output that we can use while testing the program.
After each guess, it prints out the current range of numbers it’s considering
(the lines like 26 49). Don’t be afraid to print out extra stuff like this to
help you figure out exactly what your program’s doing while testing.

Notice that in Figure 3.10, we have a if block inside of a while loop.

3.5. EXAMPLE PROBLEM SOLVING: GUESSING GAME 69

print "Think of a number from 1 to 100."

start with the range 1-100

smallest = 1

largest = 100

initialize answer to prevent NameError

answer = ""

while answer != "equal":

make a guess

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

update the range of possible numbers

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print "I got it!"

Figure 3.11: Guessing game: final version

If you want to do that, or include a loop in a loop, or an if in an if, just
increase the amount of indenting so the inside block is indented more.

Finally, we have a working guessing game program. A final polished
version has been created in Figure 3.11.

You’ll notice in Figure 3.11 that we have added some comments to the
code. In Python, comments are on lines that start with a #.

Comments let you include information that is meant only for the pro-
grammer. The Python interpreter ignores comments. They are used only
to make code easier to understand. You should be in the habit of writing
comments on sections of code that briefly describe what the code does.

70 UNIT 3. CONTROL STRUCTURES

write “Think of a number between 1 and 100.”
set guess to 1
until the user answers “equal”, do this:

write “Is your number equal to or not equal to guess?”
read answer
set guess to guess + 1

Figure 3.12: A much worse version of the guessing game

Topic 3.6 Running Time

In this section, we will explore how long it takes for algorithms to run. The
running time of an algorithm will be part of what determines how fast a
program runs. Faster algorithms mean faster programs, often much faster,
as we will see.

The running time of algorithms is a very important aspect of computing
science. We will approach it here by working through some examples and
determining their running time.

The Guessing Game

When you were experimenting with the guessing game algorithm and pro-
gram in Topics 1.4 and 3.5, you probably tried the game with a few different
numbers. Hopefully, you noticed that this algorithm focuses in on the num-
ber you’re guessing quite quickly. It takes at most seven guesses to get your
number, no matter which one you’re thinking of.

Suppose we had written the program from the pseudocode in Figure 3.12.

This algorithm starts at zero and guesses 1, 2, 3, . . . , until the user
finally enters “equal”. It does solve the “guess the number between 1 and
100” problem and it meets the other criteria in the definition of an algorithm.

What’s different about this algorithm is the amount work it has to do to
finish. Instead of at most seven guesses, this algorithm requires up to 100.
Obviously, if we’re trying to write a fast program, an algorithm that requires
seven steps to solve a problem is much faster than one that takes 100.

Suppose we were writing a guessing game that guessed a number from 1
to n. The value of n could be determined when we write the program or by

3.6. RUNNING TIME 71

asking the user for the “size” of the game before we start. How many steps
would each algorithm take if we modified it to guess a number from 1 to n?

The algorithm in Figure 3.12 would take up to n steps (if the user was
thinking of n).

The number of guesses needed by the original algorithm from Figure 1.3
is a little harder to figure out. Each time the algorithm makes a guess, it
chops the range from smallest to largest in half. The number of times we can
cut the range 1–n in half before getting down to one possibility is ⌈log

2
n⌉.

The notation ⌈x⌉ means “round up”. It’s the opposite of the floor
notation, ⌊x⌋ and is usually pronounced “ceiling”.

The mathematical expression log
2
n is the “base-2 logarithm of

n”. It’s the power you have to raise 2 to to get n. So, if we let
x = log

2
n, then it’s always true that 2x = n.

Having a running time around log
2
n steps is good since it grows so slowly

when n increases:

log
2
1 = 0 ,

log
2
16 = 4 ,

log
2
1024 = 10 ,

log
2
1048576 = 20 .

We could give this program inputs with n = 1000000 and it would still only
take about 20 steps.

Why does this algorithm take about log
2
n steps? Consider the number of

possible values that could still be the value the user is thinking of. Remember
that this algorithm cuts the number of possibilities in half with each step.

Step Possible values
0 n = n/20

1 n/2 = n/21

2 n/4 = n/22

3 n/8 = n/23

k n/2k

72 UNIT 3. CONTROL STRUCTURES

In the worst case, the game will end when there is only one possibility left.
That is, it will end after k steps, where

1 = n/2k

2k = n

log
2
2k = log

2
n

k = log
2
n .

So, it will take log
2
n steps.

Basically, any time you can create an algorithm like this that cuts the
problem in half with every iteration, it’s going to be fast.

Remember: any time you have a loop that cuts the problem in half
with each iteration, it will loop log n times. If you understand the
above derivation, good. If you’d just like to take it on faith, that’s
fine too.

Repeated Letters

Now consider the algorithm in Figure 3.13. It will check a word (or any
string, really) to see if any character is repeated anywhere. For example, the
word “jelly” has a repeated “l”; the word “donuts” has no repeated letters.
This algorithm works by taking leach letter in the word, one at a time, and
checking each letter to the right to see if its the same.

For example, with the word “Lenny”, it will make these comparisons:

L is compared with e, n, n, y (none are equal)
e is compared with n, n, y (none are equal)
n is compared with n, y (equals the “n”)
n is compared with y (none are equal)
y is compared with nothing

In the third line, it will compare the first and second “n” and notice that
they are equal. So, this word has repeated letters.

You can find a Python implementation of this program in Figure 3.14.
The only new thing in this program: you can get character n out of a string
str by using the expression str[n]. This is called string subscripting. Note
that the first character in the string is str[0], not str[1].

This program makes n(n − 1)/2 = n2/2 − n/2 comparisons if you enter
a string with n characters. When measuring running time of a program,

3.6. RUNNING TIME 73

write “Enter the word:”
read word
set counter to 0
for all letters letter a in the word , do this:

for all letters letter b to the right of letter a, do this:

if letter a is equal to letter b then

set counter to counter+1

if counter > 0 then

write “There are repetitions”

else

write “No repetitions”

Figure 3.13: Algorithm to check for repeated letters in a word

word = raw_input("Enter the word: ")

counter = 0

length = len(word)

for i in range(length):

for each letter in the word...

for j in range(i+1, length):

for each letter after that one...

if word[i]==word[j]:

counter = counter + 1

if counter>0:

print "There are repeated letters"

else:

print "There are no repeated letters"

Figure 3.14: Repeated letters Python implementation

74 UNIT 3. CONTROL STRUCTURES

we won’t generally be concerned with the smaller terms because they don’t
change things too much as n gets larger (we’ll ignore n/2 in the example).

We generally aren’t concerned with the constant in front of the term (the
1

2
on the n2). So, we will say that the algorithm in Figure 3.13 has a running

time of n2.

You’d be right if you think that throwing away the 1

2
is losing

a lot of information. The difference between an algorithm that
finishes in 100 or 200 seconds is significant. The problem is that
it’s too hard to come up with a factor like this that actually means

something. The algorithm could easily run twice as fast or half
as fast if it was implemented in a different programming language,
using different commands in the language, on a different computer,
and so on.
Bottom line: is the 1

2
a big deal? Yes, but we don’t worry about it

when estimating running times.

If you are taking or have taken MACM 101, you might recognize
all of this as the same thing that’s done with big-O notation. We
would say that the repeated letters algorithm has a running time
of O(n2). If you haven’t taken MACM 101, watch for the big-O
stuff if you do.

Subset Sum

Let’s consider one final example where the best known solution is very slow.
Suppose we get a list of integers from the user, and are asked if some of

them (a subset) add up to a particular target value. This problem is known
as “subset sum”, since we are asked to find a subset that sums to the given
value.

For example, we might be asked to find a subset of 6, 14, 127, 7, 2, 8 that
add up to 16. In this case, we can. We can take the 6, 2, and 8: 6+2+8 = 14.
In this example, we should answer “yes”.

If we used the same list of numbers, but had a target of 12, there is no
subset that adds to 12. We should answer “no” in that case.

Some rough pseudocode for the subset-sum problem can be found in Fig-
ure 3.15. This algorithm will solve the problem. It simply checks every
possible subset of the original list. If one sums to the target, we can answer
“yes”; if none do, the answer is “no”.

3.6. RUNNING TIME 75

for every subset in the list:

set sum to to the sum of this subset
if sum is equal to target :

answer “yes” and quit

answer “no”

Figure 3.15: Algorithm to solve the subset-sum problem.

n 2n ≈ Approx. time
4 16 16 milliseconds
10 103 1 second
20 106 17.7 minutes
30 109 11.6 days
40 1012 31.7 years

Figure 3.16: Running time of an exponential algorithm

What is the running time of this algorithm? It depends on the number
of times the loop runs. If we have a list of n items, there are 2n subsets, so
the running time will be exponential: 2n.

More accurately, the running time is n2n, since calculating the sum
of the subset takes up to n steps.

An exponential running time is very slow. It’s so slow that exponen-
tial running times are often not even considered “real” solutions. Consider
Figure 3.16. It gives running times of a 2n algorithm, assuming an imple-
mentation and computer that can do 1000 iterations of the loop per second.

As you can see from Figure 3.16, this algorithm can only solve subset-sum
for the smallest of cases. Even if we find a computer that is much faster, we
can only increase the solvable values of n by a few values.

Can we do better than the algorithm in Figure 3.15? Maybe. There are
no known sub-exponential algorithms for this problem (or others in a large
class of equally-difficult problems), but there is also no proof that they don’t
exist.

76 UNIT 3. CONTROL STRUCTURES

Number of “Steps”

We have avoided giving the exact definition of a “step” when calculating
running times. In general, pick a statement in the innermost loop, and
count the number of times it runs.

Usually, you can multiply together the number of iterations of the nested
loops. For example, consider an algorithm like this one:

statement 1
for i from 1 to log n:

statement 2
for j from 1 to n/2:

statement 3

Here, “statement 3” is in the innermost loop, so we will count the number of
times it executes. The first for loop runs log n times, and the second runs
n/2 times. So, the running time is (logn) · (n/2). We discard the constant
factor and get a running time of n logn.

Remember that when determining running time, we will throw away
lower-order terms and leading constants. That means we don’t have to count
anything in “shallower” loops, since they will contribute lower-order terms.
Similarly, we don’t have to worry about how many statements are in the
loops; that will only create a leading constants, which will be discarded any-
way.

Summary

We have now seem algorithms that have running time logn, n, n2 and 2n.
See Figure 3.17 for a comparison of how quickly these times grow as we
increase n. In the graph, 2n has been excluded, because it grows too fast to
see without making a much larger graph.

As you can see, the log
2
n function is growing very slowly and n2 is

growing quite fast.
Coming up with algorithms with good running times for problems can

be very hard. We will see a few more examples in this course. A lot of
computing scientists spend a lot of time working on efficient algorithms for
particular problems.

For a particular algorithm, you can come up with programs that run faster
or slower because of the way they are written. It’s often possible to decrease
the number of iterations slightly or make the calculations more efficient.

3.7. DEBUGGING 77

0

20

40

60

80

100

20 40 60 80 100

steps

n

log

n2

2 n

n

Figure 3.17: Graph of the functions log
2
n, n, and n2

But no matter how fast the program is you’ve written, a better algo-
rithm will always win for large inputs. This is why most computing science
courses spend so much time focusing on algorithms instead of the details of
programming. The programming part is easy (one you learn how, anyway).
It’s coming up with correct, fast algorithms that’s hard.

Running time is fundamental when it comes to studying algo-
rithms. It is covered in CMPT 225 (Data Structures and Pro-
gramming), CMPT 307 (Data Structures and Algorithms), and
many other courses. The mathematical details of the analysis are
covered in MACM 101 (Discrete Math I).

Topic 3.7 Debugging

Unfortunately, when you write programs, they usually won’t work the first
time. They will have errors or bugs. This is perfectly normal, and you
shouldn’t get discouraged when your programs don’t work the first time.
Debugging is as much a part of programming as writing code.

78 UNIT 3. CONTROL STRUCTURES

Section 1.3 and Appendix A in How to Think Like a Computer Scientist

cover the topic of bugs and debugging very well, so we won’t repeat too much
here. You should read those before you start to write programs on your own.

Beginning programmers often make the mistake of concentrating too
much on trying to fix errors in their programs without understanding what
causes them. If you start to make random changes to your code in the hopes
of getting it to work, you’re probably going to introduce more errors and
make everything worse.

When you realize there’s a problem with your program, you should do
things in this order:

1. Figure out where the problem is.

2. Figure out what’s wrong.

3. Fix it.

Getting it right the first time

The easiest way to get through the first two steps here quickly is to write
your programs so you know what parts are working and what parts might
not be.

Write small pieces of code and test them as you go. As you write your
first few programs, it’s perfectly reasonable to test your program with every
new line or two of code.

It’s almost impossible to debug a complete program if you haven’t tested
any of it. If you get yourself into this situation, it’s often easier to remove
most of the code and add it back slowly, testing as you do. Obviously, it is
much easier to test as you write.

Don’t write your whole program without testing and then ask the
TAs to fix it. Basically, they would have to rewrite your whole
program to fix it, and they aren’t going to do that.

As you add code and test, you should temporarily insert some print

statements. These will let you test the values that are stored in variables so
you can confirm that they are holding the correct values. If not, you have a
bug somewhere in the code you’ve written and should fix it before you move
on.

In the two example “Problem Solving” topics, 2.7 and 3.5, the program
was written in small pieces to illustrate this approach.

3.7. DEBUGGING 79

Finding bugs

Unfortunately, you won’t always catch every problem in your code as you
write it, no matter how careful you are. Sooner or later, you’ll realize there
is a bug somewhere in your program that is causing problems.

Again, you should resist the urge to try to fix the problem before you know
what’s wrong. Appendix A of How to Think Like a Computer Scientist talks
about different kinds of errors and what to do about them.

When you realize you have a bug in your program, you’re going to have
to figure out where it is. When you are narrowing the source of a bug, the
print statement can be your best friend.

Usually, you’ll first notice either that a variable doesn’t contain the value
you think it should or that the flow of control isn’t the way you think it
should be because the wrong part of an if is executed.

You need to work backwards from the symptom of the bug to its cause.
For example, suppose you had an if statement like this:

if length*width < possible area:

If the condition doesn’t seem to be working properly, you need to figure out
why. You can add in some print statements to help you figure out what’s
really going on. For example,

print "l*w:", length*width

print "possible:", possible area

if length*width < possible area:

print "I’m here"

When you check this way, be sure to copy and paste the exact expressions
you’re testing. If you accidentally mistype them here, it could take a long

time to figure out what has happened.

You’ll probably find that at least one of the print statements isn’t doing
what it should. In the example, suppose the value of length*width wasn’t
what we expected. Then, we could look at both variables separately:

print "l, w:", length, width

If length was wrong, you would have to backtrack further and look at what-
ever code sets length. Remove these print statements and add in some
more around the length=. . . statement.

80 UNIT 3. CONTROL STRUCTURES

Topic 3.8 Coding Style

Writing code that is correct and solves the problem isn’t always enough. It’s
also important to write code that someone can actually read and understand.

It is often necessary for you or others to return to some code and add
features or fix problems. In fact, in commercial software, most of the expense
is in maintenance, not in the initial writing of the code.

It can be quite difficult to look at someone else’s code (or even your own
code after a few months) and figure out what’s going on. In order to fix bugs
or add features, you need to understand the logic and details of the code,
otherwise you’ll probably break more than you fix.

To help others (and yourself) understand the code you’ve written, it’s
important to try to make everything as clear as possible. There are no
absolute rules in this, but there are some guidelines you can follow.

Comments

Comments can be used in your code to describe what’s happening. In
Python, the number sign (#, also called the hash or pound sign) is used
to start a comment. Everything on a line after the # is ignored: it is there
for the programmer only, and does not affect the way the program runs.

In your programs, you should use comments to explain difficult parts
of the code. The comment should explain what is happening and/or why
it needs to be done. This can include a description of the algorithm and
purpose, if it’s not immediately clear.

Often, when beginning programmers are told “comments are good,” the
results are something like this:

add one to x

x = x + 1

Don’t do that. Anyone reading your code should understand Python, and
doesn’t need the language explained to them. Comments that actually ex-
plain how or why are much more useful:

the last entry was garbage data, so ignore it

count = count - 1

3.8. CODING STYLE 81

That comment will help somebody reading your code understand why it was
necessary to decrease count.

It is often useful to put a comment at the start of each control structure,
explaining what it does, or what the condition checks for. Here are some
examples:

if the user entered good data, add it in

if value >= 0:

total = total + value

count = count + 1

search for a value that divides num

while num%factor != 0:

factor = factor + 1

You can also put a comment at the top of a “section” of code. Look for
chunks of code that do a specific task, and put a comment at the top that
describes what that task is, and how it’s done. For example,

Get user input

Ask for integers, adding them up, until the user

enters "0".

The Code Itself

The way the code itself is written can make a huge difference in readability
and maintainability.

Probably the easiest thing to do is to use good variable names. Variable
names should describe what the variable holds and what it’s for. Consider
the first example above with poorly chosen variable names:

if x >= 0:

y = y + x

z = z + 1

It would take a lot of careful reading to figure out what this code actually
does. With descriptive variable names, it’s much easier, even without the
comment:

if value >= 0:

total = total + value

count = count + 1

82 UNIT 3. CONTROL STRUCTURES

a = int(raw_input("Enter an integer: "))

b = 0

for i in range(a+1):

if i>0:

if a % i==0:

b = b + 1

print "There are " + str(b) + " factors."

Figure 3.18: A program with poor style

There is a bit of a trade-off between the length of the variable name and
how readable it is. On one hand, short variables names like a, n1, and x aren’t
very descriptive. But, variable names that are too long can be difficult to type
and clutter code. The name total_number_of_values_entered_by_user

may be very descriptive, but code using it would be unreadable. Perhaps
values_entered would be better.

The spacing in your code is also important.
In Python, you are required to indent the blocks of code inside a con-

trol statement. In many other programming languages, this is optional, but
still considered good practice. In Python, you should be consistent in your
spacing: the standard style is to indent each block by four spaces.

Spacing within a statement can help readability as well. Consider these
two (functionally identical) statements:

y = 100 / x+1

y = 100/x + 1

The spacing in the first one suggests that the x+1 calculation is done first (as
in 100/(x+1)), but this is not the case. The order of operations in Python
dictate that the expression is equivalent to (100/x)+1. So, the second spacing
gives a more accurate first impression.

You can use space within lines, and blank lines in the code, to separate
sections logically. This will make it easier to scan the code later and pick out
the units.

Summary

Again, there are no absolute rules for coding style. It is overall a matter of
opinion, but the guidelines above can be followed to point you in the right

3.8. CODING STYLE 83

get user input and initialize

num = int(raw_input("Enter an integer: "))

count = 0

check every possible factor (1...num)

for factor in range(1, num+1):

if factor divides num, it really is a factor

if num%factor == 0:

count = count + 1

output results

print "There are " + str(count) + " factors."

Figure 3.19: Figure 3.18 with the style improved

direction.

When you are writing code, you should always keep in mind how easy it
is to read and follow the code. Add comments and restructure code where
necessary.

Consider the program in Figure 3.18. What does it do? How is it being
done? Does the text displayed to the user in the last line help?

Now look at Figure 3.19. This program does the exact same thing, but
has better style. Better variable names and a few comments make a big
difference in how easy it is to understand. Even if you don’t know what the
% operator does in the if condition, you can probably figure out what the
program does.

a%b computes the remainder of a divided by b. When it evaluates
to zero, there is no remainder: a is evenly divisible by b.

There is another change in Figure 3.19 that is worth mentioning. The
logic of the program was changed slightly to simplify it. The if in Fig-
ure 3.18 is only necessary to eliminate the case where the loop variable is
zero: checking this case causes a division by zero error. We can change the
range so the loop avoids this case in the first place.

This illustrates a final important aspect of coding style: the actual logic
of the program. The first way you think of to accomplish something might
not be the simplest. Always be on the lookout for more straightforward ways

84 UNIT 3. CONTROL STRUCTURES

to do what needs to be done. You can often eliminate some logic in your
program in favour of something that does the same thing in an easier way.

This, along with other aspects of coding style, takes experience.
You will learn new methods and tricks to get things done in a
program as you write more code, read more code, and take more
courses. Be patient and keep your eyes open for new techniques.

◮ Go back to the code you wrote for the first assignment in this course. Can

you easily understand how it works? Keep in mind that it’s only been a

few weeks: imagine coming back to it next year.

◮ Now, try to swap code with someone else in the course. Can you understand

each other’s code?

Topic 3.9 More About Algorithms

Now that you know about variables, conditionals, and loops, you have all
of the building blocks you need to start implementing algorithms. (You’ll
still need to know some more about working with data structures before you
can implement any algorithm. We will talk more about data structures in
Unit 5.)

We have also said that coming up with an algorithm is generally much
harder than implementing the algorithm with a programming language. Cre-
ating algorithms is something you’ll practice over the next few years if you
continue in computing science.

Binary Conversion

To get you started thinking about creating algorithms, we’ll do one example
here. In Topic 2.6, we talked about how to convert a binary value to decimal:
each bit is multiplied by the next power of two and the results added.

But, how can we do the opposite conversion? If I give you the number
13, how can you determine its (unsigned) binary representation? (For the
record, it’s 1101.)

First, let’s assume we’re limited to 8-bit binary numbers. The 8-bit rep-
resentation of the number 13 is shown in Figure 3.20, with the numeric value

3.9. MORE ABOUT ALGORITHMS 85

6412
8 32 16 8 4 2 1

1 1 10 0 0 00

Figure 3.20: The number 13 represented with 8 bits

of each bit. We can check to see that this is the correct representation:
8 + 4 + 1 = 13.

Now, back to the question of how we could come up with this. Let’s try
to get the eight-bit representation for the number 25.

First an easy question: do we need a 0 or 1 in the first position (the 128’s
position)? Obviously not, 128 is much bigger than 25, so adding in a 128
will make the whole thing too big. In fact, we can fill in the highest three
bits this way. They are all larger than 25, so we’ll definitely want 0’s there:

000?????

Well, at least we’re getting somewhere: we have the first few bits taken
care of. Now, do we want a 0 or 1 in the next position (16)? According to
the above reasoning, we could put a 1, but is that necessarily right? Suppose
we don’t: put a 0 in the 16’s position. Then all of the bits we have left to
fill are 8, 4, 2, and 1. These add up to 15, so there’s no way we could get 25
out of that. We have to put a 1 in the 16’s position:

0001????

For the rest of the positions, we can continue in a similar way. We have
taken care of 16 of the number 25 we’re trying to represent, so we have 9
left. Keep going down the line: for the 8’s position, 8 is less than 9, so put
a 1 in that position:

00011???

We now have 1 left to represent. We can’t take a 4 or a 2, but will set
the last bit to 1:

00011001

This has described a fairly simple algorithm to determine the binary
representation of a number: if the bit we’re looking at will fit in the number
we have left, put a 1; if not, put a 0. Pseudocode for this algorithm is in
Figure 3.21.

86 UNIT 3. CONTROL STRUCTURES

read num
for positions p from 7, 6, . . . 0, do this:

if num < 2p, then

set binary to binary + “0”

otherwise,

set binary to binary + “1”
set num to num − 2p

write binary

Figure 3.21: Pseudocode to determine the 8-bit binary representation

This algorithm only works for numbers up to 255. If you give the algo-
rithm a number any bigger than that, it will produce all 1’s. It’s possible to
fix the algorithm by starting with bit ⌊log

2
n⌋, instead of bit 7.

So?

You should probably know how to convert a number to its binary represen-
tation, but that’s not the point of this topic.

As you go on into computing science, development of algorithms is impor-
tant. The point here is to give you an idea of how you can go about coming
up with an algorithm. Start by trying to work out the problem by hand and
try to recognize the common steps and decisions needed. Try to work this
into pseudocode expressing a general method and test it on different values.

Once you have the pseudocode, you can then start working on a program
that implements the algorithm you’ve developed.

Summary

At this point, we have seen all of the major building blocks of computer
programs. Once you have loops and conditionals, you can combine them to
tackle just about any problem.

Again with this material, you have to practice these ideas by writing
programs before you’ll really understand them.

3.9. MORE ABOUT ALGORITHMS 87

Key Terms

• if statement

• condition

• boolean expression

• for loop

• while loop

• running time

• debugging

88 UNIT 3. CONTROL STRUCTURES

