
Unit 2

Programming Basics

Learning Outcomes

• Use the Python software to get programs running.

• Create programs that perform simple calculations.

• Use variables to store information in a program.

• Create programs that take input from the user.

• Explain how computers store information in binary.

• Take a simple problem and create an algorithm that solves it.

• Implement that algorithm in Python.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Chapter 2 in How to Think Like a Computer Scientist.

Topic 2.1 Starting with Python

In this course, you will be using the Python programming language. You
can download Python for free or use it in the lab. See Appendix A for more
instructions on how to use the software.

29

30 UNIT 2. PROGRAMMING BASICS

One nice feature of Python is its interactive interpreter . You can start
up Python and start typing in Python code. It will be executed immediately,
and you will see the results.

You can also type Python code into a file and save it. Then, you can run
it all at once. The interactive interpreter is generally used for exploring the
language or testing ideas. Python code in a file can be run as an application
and even double-clicked to run your program.

You will start by working with the Python interpreter. See Appendix A
for instructions on getting Python running. When you start the Python
interpreter, you’ll see something like this:

Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)

Type "help", "copyright", "credits" or "license" for

more information.

>>>

The >>> is the prompt . Whenever you see it in the interpreter, you can type
Python commands. When you press return, the command will be executed
and you will be shown the result. Whenever you see the >>> prompt in
examples, it’s an example of what you’d see in the interpreter if you typed
the code after the >>>.

For some reason, when people are taught to program, the first program
they see is one that prints the words “Hello world” on the screen. Not
wanting to rock the boat, you will do that too. Here’s what it looks like in
the Python interpreter:

>>> print "Hello world"

Hello world

The stuff after the prompt is the first line of Python code you have seen.
You could have also typed it into a text editor, named the file hello.py and
run it.

The print command in Python is used to put text on the screen. What-
ever comes after it will be printed on the screen.

Any text in quotes, like "Hello world" in the example, is called a string.
Strings are just a bunch of characters. Characters are letters, numbers,
spaces, and punctuation. Strings have to be placed in quotes to be distin-
guished from Python commands. If we had left out the quotes, Python would
have complained that it didn’t know what “Hello” meant, since there is no
built-in command called Hello.

2.1. STARTING WITH PYTHON 31

The Interpreter vs. the Editor

When you use Python’s IDLE (Integrated DeveLopment Environment), the
first window that you see is the interactive interpreter. That’s the window
with the >>> prompt where you can type Python code, press return, and see
its result. You can use this to test small sections of Python code to make
sure they do what you expect.

If you create a “New Window”, the window you create is a file editing
window. It doesn’t have a prompt or anything else. You can type Python
code here and save it as a .py file. You can run a Python .py file by double
clicking it. You can also press F5 while editing it in IDLE to run it. You
should use an editor window to write whole programs.

Check-Up Questions

◮ Type print "Hello world!" into an editor window in IDLE and save it
as hello.py file. Run it with Python.

If you’re using Windows and you run the program by double-clicking the
file, the output window might disappear before you can see the results.
You can stop this from happening by running the program in IDLE or by
waiting for the user to press return before ending the program. We’ll talk
about how to do that in the next topic.

◮ Add a few more print statements to your hello.py program (one per line).
Run it and see what happens.

Statements

If you did the “Check-Up Questions” above, you would have created a file
containing one line:

print "Hello world!"

This line is a Python statement.

Statements are the basic building blocks of Python programs. Each state-
ment expresses a part of the overall algorithm that you’re implementing. The
print statement is the first one you have seen so far, but there are many
others. Each one lets you express a different idea in such a way that the
computer can complete it.

32 UNIT 2. PROGRAMMING BASICS

When you run a Python program (i.e., code you typed in a .py file and
saved), the statements are executed in the order they appear in the file. So,
the Python program

print "Hello world!"

print "I’m a Python program that prints stuff."

. . . will produce this output:

Hello world!

I’m a Python program that prints stuff.

Topic 2.2 Doing Calculations

In order to implement the algorithm in Figure 1.3, you will need to be able
to calculate guess + 1 and ⌊(smallest + largest)/2⌋.

Python can do calculations like this. An expression is any kind of calcu-
lation that produces a result. Here are some examples of using expressions
in print statements in the Python interpreter:

>>> print 10 - 2

8

>>> print 15/3

5

>>> print 25+19*5

120

>>> print 10.2 / 2 / 2

2.55

The Python operators +, -, *, and / perform addition, subtraction, mul-
tiplication, and division, as you might expect. Note that they do order-of-
operations they way you’d expect, too:

>>> print 25+19*5

120

>>> print 25+(19*5)

120

>>> print (25+19)*5

220

2.2. DOING CALCULATIONS 33

Parentheses do the same thing they do when you’re writing math: they
wrap up part of a calculation so it’s done first. Note that a number by itself
is an expression too.

>>> print 18

18

Now, in Figure 1.3, suppose that the current value of smallest is 76 and
largest is 100. Then, we can at least do the right calculation:

>>> print (76+100)/2

88

Python can do calculations on strings too.

>>> print "An" + "Expression"

AnExpression

>>> print "An " + ’Expression’

An Expression

>>> print ’ABC’ * 4

ABCABCABCABC

Note that when you enter a string, it has to be wrapped up in quotes.
This is the only way Python can distinguish between characters that are part
of a string or part of the expression itself. In Python, single quotes (’) and
double quotes (") can be used interchangeably.

If you forget the quotes around a string, you’ll probably get an error
message:

>>> print An + ’Expression’

NameError: name ’An’ is not defined

Here, Python is telling us that it doesn’t know the word “An”. It does
know words like print and a few others. If you want to talk about a bunch
of characters as part of a string, they have to be surrounded by quotes. So,
even when a number, or anything else is in quotes, it is treated like a string
(which makes sense, since strings go in quotes):

>>> print 120 * 3

360

>>> print "120" * 3

120120120

>>> print "120 * 3"

120 * 3

34 UNIT 2. PROGRAMMING BASICS

Functions

Python can also use functions as part of expressions. These work like func-
tions in mathematics: you give the function some arguments, and something
is done to calculate the result. The result that the function gives back is
called its return value.

For example, in Python, there is a built-in function round that is used to
round off a number to the nearest integer:

>>> print round(13.89)

14.0

>>> print round(-4.3)

-4.0

>>> print round(1000.5)

1001.0

Functions can take more than one argument. The round function can
take a second argument (an optional argument) that indicates the number
of decimal places it should round to. For example,

>>> print round(12.3456, 1)

12.3

>>> print round(12.3456, 2)

12.35

>>> print round(12.3456, 5)

12.3456

In these examples, the value is rounded to the nearest 0.1, 0.01, and
0.00001. For this function, if you don’t indicate the optional argument,
its default is 0. The default value for optional arguments depends on the
function.

Functions can take any type of information as their argument and can
return any type. For example, Python’s len function will return the length
of a string, i.e. how many characters it has:

>>> print len("hello")

5

>>> print len("-<()>-")

6

>>> print len("")

0

2.3. STORING INFORMATION 35

There are many other ways to do calculations on numbers and strings than
we have seen here. You will see more as you learn more about programming.
You will see some more functions as you need them.

Check-Up Questions

◮ Try printing the results of some other expressions. Check the calculations
by hand and make sure the result is what you expect.

◮ Try some of the above string expressions, swapping the single quotes for
double quotes and vice-versa. Convince yourself that they really do the
same thing.

◮ Some of the examples above “multiply” a string by a number (like "cow"*3).
The result is repetition of the string. What happens if you multiply a num-
ber by a string (3*"cow")? What about a string by a string ("abc"*"def")?

Topic 2.3 Storing Information

You aren’t going to want to always print out the result of a calculation like
we did in Topic 2.2. Sometimes, you need to perform a calculation to be
used later, without needing to display the results right away. You might also
want to ask the user a question and remember their answer until you need
it.

For example, in the algorithm in Figure 1.2, you want to calculate values
for smallest, largest , and guess and store those results. You also need to ask
the user for their answer and store the result. You need to keep all of those
in the computer’s memory.

Whenever we need the computer to temporarily remember some infor-
mation in a program, we will use a variable. A variable is a way for you to
reserve a little bit of the computer’s memory to store the information you
need.

You will give variables names that you will use to refer to them later. For
example, if you ask the user for their age and want to store their input, you
might use a variable named “age”. The name of the variable should describe
and somehow indicate what it represents.

36 UNIT 2. PROGRAMMING BASICS

To put a value in a variable, a variable assignment statement is used.
For example, to put the result of the calculation 14/2 into a variable named
quotient,

quotient = 14/2

In a variable assignment statement, put the name of the variable you
want to change on the left, an equals sign, and the new value on the right.

You can use any expression to calculate the value that will be stored in
the variable. Variables can store any kind of information that Python can
manipulate. So far we have seen numbers and strings.

Be careful: Only the result of the calculation is stored, not the
whole calculation.

To use the value that’s stored in a variable, you just have to use its name.
If a variable name is used in an expression, it is replaced with the stored
value.

>>> num = 7

>>> word = "yes"

>>> print num - 3

4

>>> print word + word

yesyes

>>> num = 4

>>> print num - 3

1

Note that you can change the value in a variable. In the above example,
num was first set to 7 and then changed to 4. Notice that the variable num

was holding a number and word was holding a string. You can change the
kind of information a variable holds by doing a variable assignment as well.

Topic 2.4 Types

As noted above and in Topic 2.2, Python treats numbers (like 2, -10, and
3.14) differently than strings (like "abc", "-10", and ""). For example, you
can divide two numbers, but it doesn’t make sense to divide strings.

2.4. TYPES 37

>>> print 10/2

5

>>> print "abc" / 2

TypeError: unsupported operand type(s) for /: ’str’ and

’int’

Numbers and strings are two different types of information that Python can
manipulate. String variables are used to hold text or collections of characters.

In Python, a TypeError indicates that you’ve used values whose types
can’t be used with the given operation. The type of the values given to an
operator can change the way it works. In Topic 2.2, you saw that the +

operator does different things on numbers (addition) and strings (joining).
In fact, the numeric values that Python stores aren’t as simple as just

“numbers”. Have a look at this example from the Python interpreter:

>>> print 10/2

5

>>> print 10/3

3

>>> print 10.0/3

3.33333333333

Why does Python give a different answer for 10/3 than it does for 10.0/3?
The division operation does different things with integers than with floating

point values.
Integers are numbers without any fraction part. So, 10, 0, and -100 are

all integers. Numbers with fractional parts, like 3.14, -0.201, and 10.0, are
stored as floating point values. These two types are represented differently
in the computer’s memory, as we will discuss in Topic 2.6.

That’s why Python comes up with different answers for 10/3 and 10.0/3:
there are different types of values given. In the case of integer division (10/3),
the rule is that the result must be an integer. The floating point result has
its fractional part rounded down to give the integer 3. For floating point
division, the result can have a fractional part, so the result is what you’d
probably expect.

There is a built-in function called type that will tell you the type
of an object in Python. Try type(10/3) and type(10.0/3).

When implementing the pseudocode in Figure 1.3, you can actually use
this to make sure the calculation guess rounds down to the next integer.

38 UNIT 2. PROGRAMMING BASICS

Note that you can trick Python into treating a whole number like a float-
ing point number by giving it a fractional part with you type it. So 10 is an
integer (or “int” for short), but 10.0 is a floating point value (or “float”).

Type Conversion

Sometimes, you’ll find you have information of one type, but you need to
convert it to another.

For example, suppose you want to calculate the average of several integers.
You would do the same thing you would do by hand: add up the numbers
and divide by the number of numbers. Suppose you had found the sum of 10
numbers to be 46, leaving the values 46 in sum and 10 in num. If you try to
divide these numbers in Python, you’ll get the result 4, since you’re dividing
two integers. Really, you want the result 4.6, which you would get if at least
one of the values being divided was a float.

There are Python functions that can be used to change a value from one
type to another. You can use these in an expression to get the type you want.
The function int() converts to an integer, float() converts to a floating
point value, and str() converts to a string. For example,

>>> float(10)

10.0

>>> str(10)

’10’

>>> int(’10’)

10

>>> int(83.7)

83

>>> str(123.321)

’123.321’

>>> int("uhoh")

ValueError: invalid literal for int(): uhoh

As you can see, these functions will do their best to convert whatever
you give them to the appropriate type. Sometimes, that’s just not possible:
there’s no way to turn "uhoh" into an integer, so it causes an error.

In the example of calculating the average, we can do a type conversion
to get the real average:

2.4. TYPES 39

>>> total = 46

>>> num = 10

>>> print total/num

4

>>> print float(total)/num

4.6

>>> print float(total/num)

4.0

Have a closer look at the last example. Since the conversion is wrapped
around the whole calculation, only the result is converted. So, Python divides
the integers 46 and 10 to get 4. This is converted to the floating point value
4.0. In order for the floating point division to work, at least one of the
numbers going into the division must be a floating point value.

Converting numbers to strings is often handy when printing. Again,
suppose you have 46 in the variable total and you want to print out a
line like

The sum was 46.

You can print out multiple values with the comma, but they are separated
by spaces:

>>> print "The sum was", total, "."

The sum was 46 .

Note that there’s a space between the 46 and the period. You can remove
this by combining strings to get the result we want:

>>> print "The sum was " + str(total) + "."

The sum was 46.

When Python joins strings, it doesn’t add any extra spaces. You have to
convert total to a string here since Python doesn’t know how to add a
string and a number:

>>> print "The sum was " + total + "."

TypeError: cannot concatenate ’str’ and ’int’ objects

The word concatenate means “join together”. When you use the
+ on strings, it’s not really adding them, it’s joining them. That’s
called concatenation.

40 UNIT 2. PROGRAMMING BASICS

Topic 2.5 User Input

Something else you will need to do to implement the algorithm from Fig-
ure 1.3 is to get input from the user. You need to ask them if the number
they’re thinking of is larger, smaller or equal.

To do this in Python, use the raw_input function. This function will give
the user whatever message you tell it to, wait for them to type a response
and press enter, and return their response to your expression.

For example, this program will ask the user for their name and then say
hello:

name = raw_input("What is your name? ")

print "Hello, " + name + "."

If you run this program, it will display “What is your name? ” on the
screen and wait for the user to respond. Their response will be stored in the
variable name. For example,

What is your name? Julius

Hello, Julius.

If the user enters something else, that’s what will go in the name variable,

What is your name? Joey Jo-Jo

Hello, Joey Jo-Jo.

In this guide, any input that the user types will be set in bold,

like this.

Whenever you use the raw_input function, it will return a string. That’s
because as far as the interpreter is concerned, the user just typed a bunch of
characters and that’s exactly what a string is.

If you want to treat the user’s input as an integer or floating point number,
you have to use one of the type conversion functions described above. For
example, if you ask the user for their height, you really want a floating point
value, but we get a string. So, it must be converted:

m = float(raw_input("Enter your height (in metres): "))

inches = 39.37 * m

print "You are " + str(inches) + " inches tall."

When you run this program,

2.6. HOW COMPUTERS REPRESENT INFORMATION 41

Enter your height (in metres): 1.8

You are 70.866 inches tall.

In this example, the user enters the string "1.8", which is returned by
the raw_input function. That is converted to the floating point number 1.8
by the float function. This is stored in the variable m (for “metres”). Once
there is a floating point value in m, your program can do numeric calculations
with it. The number of inches is calculated and the corresponding floating
point number is stored in inches. To print this out, it is converted back to
a string with the str function. Sometimes print will do the conversion for
you, but it was done explicitly in this program.

Topic 2.6 How Computers Represent

Information

You may be wondering why you have to care about all of the different types
of values that Python can handle. Why should 25 be different from 25.0?
For that matter, how is the number 25 different from the string "25"?

The real difference here is in the way the computer stores these different
kinds of information. To understand that, you need to know a little about
how computers store information.

Binary

All information that is stored and manipulated with a computer is repre-
sented in binary, i.e. with zeros and ones. So, no matter what kind of infor-
mation you work with, it has to be turned into a string of zeros and ones if
you want to manipulate it with a computer.

Why just zeros and ones?

A computer’s memory is basically a whole bunch of tiny rechargeable
batteries (capacitors). These can either be discharged (0) or charged (1).
It’s fairly easy for the computer to look at one of these capacitors and decide
if it’s charged or not.

42 UNIT 2. PROGRAMMING BASICS

Prefix Symbol Factor

(no prefix) 20 = 1
kilo- k 210 = 1024 ≈ 103

mega- M 220 = 1048576 ≈ 106

giga- G 230 = 1073741824 ≈ 109

tera- T 240 = 1099511627776 ≈ 1012

Figure 2.1: Prefixes for storage units.

It’s possible to use the same technology to represent digits from 0 to
9, but it’s very difficult to distinguish ten different levels of charge
in a capacitor. It’s also very hard to make sure a capacitor doesn’t
discharge a little to drop from a 7 to a 6 without noticing. So,
modern computers don’t do this. They just use a simpler system
with two levels of charge and end up with zeros and ones.

Hard disks and other storage devices also use binary for similar reasons.
Computer networks do as well.

A single piece of storage that can store a zero or one is called a bit. Since
a bit is a very small piece of information to worry about, bits are often
grouped. It’s common to divide a computer’s memory into eight-bit groups
called bytes. So, 00100111 and 11110110 are examples of bytes.

When measuring storage capacity, the number of bits or bytes quickly
becomes large. Figure 2.1 show the prefixes that are used for storage units
and what they mean.

For example, “12 megabytes” is

12× 220 bytes = 12582912 bytes = 12582912× 8 bits = 100663296 bits .

Note that the values in Figure 2.1 are slightly different than the usual
meaning of the metric prefixes. One kilometre is exactly 1000 metres, not
1024 metres. When measuring storage capacities in computers, the 1024
version of the metric prefixes is usually used.

That statement isn’t entirely true. Hard drive makers, for instance,
generally use units of 1000 because people would generally prefer
a “60 gigabyte” drive to a “55.88 gigabyte” drive (60 × 1012 =
55.88× 230).

2.6. HOW COMPUTERS REPRESENT INFORMATION 43

Unsigned Integers

Once you have a bunch of bits, you can use them to represent numbers.
First, think about the way you count with regular numbers: 1, 2, 3,

4, 5. . . . Consider the number 157. What does each of the digits in that
number mean? The “1” is one hundred, “5” is five tens, and “7” is seven
ones: 157 = (1× 102) + (5× 10) + (7× 1).

As you go left from one place to the next, the value it represents is
multiplied by 10. Each digit represents the number of 1s, 10s, 100s, 1000s. . . .
The reason the values increase by a factor of 10 is that there are ten possible
digits in each place: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. This is called decimal or base
10 arithmetic. (The “dec-” prefix in latin means 10.)

Applying the same logic, there is a counting system with bits, binary or
base 2 arithmetic (“bi-” means 2). The rightmost bit will be the number of
1s, the next will be the number of 2s, then 4s, 8s, 16s, and so on. Binary
values are often written with a little 2 (a subscript), to indicate that they are
base 2 values: 1012. If there’s any possibility for confusion, base 10 values
are written with a subscript 10: 3410.

To convert binary values to decimal, do the same thing you did above,
substituting 2s for the 10s:

10012 = (1× 23) + (0× 22) + (0× 21) + (1× 20)

= 8 + 1

= 910 .

The base 2 value 10012 is equal to 910. Another example with a larger
number:

100111012 = (1× 27) + (0× 26) + (0× 25) + (1× 24) +

(1× 23) + (1× 22) + (0× 21) + (1× 20)

= 128 + 16 + 8 + 4 + 1

= 15710 .

So, 10011101 is the base 2 representation of the number 157. Any positive
whole number can be represented this way, given enough bits. All of the
values that can be represented with four bits are listed in Figure 2.2.

You should be able to convince yourself that for any group of n bits, there
are 2n different possible values that can be stored in those bits. So, n bits

44 UNIT 2. PROGRAMMING BASICS

binary decimal

1111 15
1110 14
1101 13
1100 12
1011 11
1010 10
1001 9
1000 8

binary decimal

0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0

Figure 2.2: The four-bit unsigned integer values.

1 0 1 0
+ 0 1 0 0

1 1 1 0

1

1 0 1 1
+ 0 0 1 0

1 1 0 1

1 1

1 1 0 1
+ 0 1 0 1
1 0 0 1 0

Figure 2.3: Some examples of binary addition

can represent any number from 0 to 2n − 1. Other common groupings are
of 16 bits (which can represent numbers 0 to 216 − 1 = 65535) and 32 bits
(which can represent numbers 0 to 232 − 1 = 4294967295).

The computer can do operations like addition and subtraction on binary
integers the same way you do with decimal numbers. You just have to keep
in mind that 1 + 1 = 210 = 102, so if you add two 1’s together, there is a
carry.

There are a few examples of binary addition in Figure 2.3. These corre-
spond to the decimal operations 10 + 4 = 14, 11 + 2 = 13, and 13 + 5 = 18.
You can use the familiar algorithms you know for subtraction, multiplication,
and division as well.

Positive and Negative Integers

The method described above will let us represent any positive integer in the
computer’s memory. What about negative numbers?

The bits that make up the computer’s memory must be used to represent
both positive and negative numbers. The typical method is called two’s

2.6. HOW COMPUTERS REPRESENT INFORMATION 45

binary decimal

1111 −1
1110 −2
1101 −3
1100 −4
1011 −5
1010 −6
1001 −7
1000 −8

binary decimal

0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0

Figure 2.4: The four-bit two’s complement values

complement notation. (The previous method, which can’t represent negative
values, is generally called unsigned integer representation.)

To convert a positive value to a negative value in two’s complement, you
first flip all of the bits (convert 0s to 1s and 1s to 0s) and then add one. So,
the four-bit two’s complement representation for −5 is:

start with the positive version: 0101
flip all of the bits: 1010

add one: 1011 .

All of the four-bit two’s complement values are shown in Figure 2.4. If
we use four bits, we can represent values from −8 to 7.

Here are a few other reasons computers use two’s complement notation:

• It’s easy to tell if the value is negative: if the first bit is 1, it’s negative.

• For positive numbers (values with the first bit 0), the unsigned and
two’s complement representations are identical. The values 0–7 have
the same representations in Figures 2.2 and 2.4.

• Addition and subtraction work the same way as for unsigned numbers.
Look back at Figure 2.3. If you instead interpret at the numbers as
two’s complement values, the corresponding decimal calculations are
−6 + 4 = −2, −5 + 2 = −3, and −3 + 5 = 2. (You have to ignore the
last 1 that was carried in the last example—the computer will.) They
are still correct. That means that the parts of the computer that do
calculations don’t have to know whether they have unsigned or two’s
complement values to work with.

46 UNIT 2. PROGRAMMING BASICS

• No number has more than one two’s complement representation. If
instead the first bit was used for the sign (0 = positive, 1 = negative),
then there would be two versions of zero: 0000 and 1000. This is a waste
of one representation, which wastes storage space, not to mention that
the computer has to deal with the special case that 0000 and 1000 are
actually the same value. That makes it difficult to compare two values.

Most modern computers and programming languages use 32 bits to store
integers. With this many bits, it is possible to store integers from −231 to
231 − 1 or −2147483648 to 2147483647.

So, in many programming languages, you will get an error if you try to
add one to 2147483647. In other languages, you will get −2147483648. The
analogous calculation with four bits is 7 + 1:

1 1 1

0 1 1 1
+ 0 0 0 1

1 0 0 0

If these were unsigned values, this is the right answer. But, if you look in
Figure 2.4, you’ll see that 1000 represents −8. If this overflow isn’t caught
when doing two’s complement, there’s a “wraparound” that means you can
suddenly go from a large positive number to a large negative one, or vice-
versa.

In Python, you don’t generally see any of this. Python will automatically
adjust how it represents the numbers internally and can represent any integer.
But, if you go on to other languages, you will eventually run into an integer
overflow.

Another type of numbers is the floating point value. They have to be
stored differently because there’s no way to store fractional parts with two’s
complement. Floating point representation is more complicated; it is beyond
the scope of this course.

Characters and Strings

The other types of information that you have seen in your Python experience
are characters and strings. A character is a single letter, digit or punctuation
symbol. A string is a collection of several characters. So, some characters are
T, $, and 4. Some strings are "Jasper", "742", and "bhay-gn-flay-vn".

2.6. HOW COMPUTERS REPRESENT INFORMATION 47

H

72

01001000 01101001

105

i
(ASCII chart lookup)

(conversion to binary)

Figure 2.5: Conversion of the string “Hi” to binary.

Storing characters is as easy as storing unsigned integers. For a byte (8
bits) in the computer’s memory, there are 28 = 256 different unsigned num-
bers: 0–255. So, just assign each possible character a number and translate
the numbers to characters.

For example, the character T is represented by the number 84, the charac-
ter $ by 36, and 4 by 52. This set of translations from numbers to characters
and back again is called a character set. The particular character set that is
used by almost all modern computers, when dealing with English and other
western languages, is called ASCII. The course web site contains links to a
full list of ASCII characters, if you’d like to see it.

So, in order to store the character T in the computer’s memory, first
look up its number in the character set and get 84. Then, use the method
described for unsigned integers to convert the number 84 to an 8-bit value:
01010100. This can then be stored in the computer’s memory.

With only one byte per character, we can only store 256 different char-
acters in our strings. This is enough to represent English text, but it starts
to get pretty hard to represent languages with accents (like á or ü). It’s just
not enough characters to represent languages like Chinese or Japanese.

The Unicode character set was created to overcome this limitation. Uni-
code can represent up to 232 characters. This is enough to represent all of
the written languages that people use. Because of the number of possible
characters, Unicode requires more than one byte to store each character.

In ASCII, storing strings with several characters, can be done by using a
sequence of several bytes and storing one character in each one. For example,
in Figure 2.5, the string “Hi” is converted to binary.

In Figure 2.5, the binary string 0100100001101001 represents “Hi” in
ASCII. But, if you look at this chunk of binary as representing an integer,

48 UNIT 2. PROGRAMMING BASICS

it’s the same as 18537. How does the computer know whether these two
bytes in memory are representing the string “Hi” or the number 18537?

There actually isn’t any difference as far as the computer itself is con-
cerned. Its only job is to store the bits its given and do whatever calculations
it’s asked to do. The programming language must keep track of what kind
of information the different parts of the memory are holding. This is why
the concept of types is so important in Python. If Python didn’t keep track
of the type of each variable, there would be no way to tell.

In some programming languages, C in particular, you can work
around the type information that the programming language is
storing. For example, you could store the string “Hi” and then
later convince the computer that you wanted to treat that piece of
memory like a number and get 18537. This is almost always a bad
idea.

How computers represent various types of information is some-
times quite important when programming. It is also discussed in
CMPT 150 (Computer Design) and courses that cover how pro-
gramming languages work like CMPT 379 (Compiler Design).

Topic 2.7 Example Problem Solving: Feet

and Inches

Back in Topic 2.5, there was a program that converted someone’s height in
metres to inches:

Enter your height (in metres): 1.6

You are 62.992 inches tall.

But, people don’t usually think of their height in terms of the number of
inches. It’s much more common to think of feet and inches. It would be
better if the program worked like this:

Enter your height (in metres): 1.6

You are 5’ 3" tall.

2.7. EXAMPLE PROBLEM SOLVING: FEET AND INCHES 49

write “Enter your height (in metres):”
read metres
set totalinches to 39.37×metres
set feet to ⌊totalinches/12⌋
set inches to totalinches − feet × 12
round inches to the nearest integer
write “You are feet ′ inches ′′ tall.”

Figure 2.6: Meters to feet-inches conversion pseudocode.

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = total_inches/12

print "You are " + str(feet) + " feet tall."

Figure 2.7: Converting to feet and inches: number of feet.

The notation 5′ 3′′ is used to indicate “5 feet and 3 inches”, which is 5×12+
3 = 63 inches.

To do this conversion, convert the number of metres to inches, as done
in Topic 2.5, by multiplying by 39.37. Then, determine how many feet and
inches there are in the total number of inches. The pseudocode is shown in
Figure 2.6.

When you’re converting an idea for an algorithm to code, you shouldn’t
try to do it all at once, especially when you’re first learning to program.
Implement part of the algorithm first, then test the program to make sure
it does what you expect before you move on. Trying to find problems in a
large chunk of code is very hard: start small.

Start writing a Python program to implement the pseudocode in Fig-
ure 2.6. You can grab the first few lines from the program in Topic 2.5.
Then, try to calculate the number of feet. This has been done in Figure 2.7.

Note that when you run this program, it calculates the number of feet as
a floating point number:

Enter your height (in metres): 1.6

You are 5.24933333333 feet tall.

50 UNIT 2. PROGRAMMING BASICS

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = int(total_inches/12)

inches = total_inches - feet*12

print "You are " + str(feet) + " feet and " \

+ str(inches) + " inches tall."

Figure 2.8: Converting to feet and inches: feet and inches.

This makes sense, given what we know about types: when Python divides
a floating point value (metres), it returns a floating point value. But in the
algorithm, you need an integer and it needs to be rounded down to the next
integer. This is what the int function does when it converts floating point
numbers to integers, so you can use that to get the correct value in feet.

If you have a statement in Python that you want to split across
multiple lines, so it’s easier to read, you can end the line with a
backslash, “\”. This was done in Figures 2.7 and 2.8, so the code
would fit on the page.

Once you have the correct number of feet as an integer, you can calculate
the number of inches too. This is done in Figure 2.8.

This program does the right calculation, but leaves the number of inches
as a floating point number:

Enter your height (in metres): 1.6

You are 5 feet and 2.992 inches tall.

To convert the number of inches to an integer, you can’t use the int

function, which would always round down. You shouldn’t get 5′ 2′′ in the
above example; you should round to the nearest integer and get 5′ 3′′.

You can use the round function for this. Note that round does the round-
ing, but leaves the result as a floating point value. You will have to use the
int function to change the type, but the value will already be correct.

See Figure 2.9 for the details. When you run this program, the output is
almost correct:

Enter your height (in metres): 1.6

You are 5 feet and 3 inches tall.

2.7. EXAMPLE PROBLEM SOLVING: FEET AND INCHES 51

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = int(total_inches/12)

inches = int(round(total_inches - feet*12))

print "You are " + str(feet) + " feet and " \

+ str(inches) + " inches tall."

Figure 2.9: Converting to feet and inches: rounding inches.

The last thing you have to do to get the program working exactly as
specified at the start of the topic is to print out the feet and inches in the
proper format: 5′ 3′′. This presents one last problem. You can’t just print
double quotes, since they are used to indicate where the string literal begins
and ends. Code like this will generate an error:

print str(feet) + "’ " + str(inches) + "" tall"

The interpreter will see the "" and think it’s an empty string (a string with
no characters in it). Then, it will be very confused by the word “tall”. The
solution is to somehow indicate that the quote is something that it should
print, not something that’s ending the string. There are several ways to do
this in Python:

• Put a backslash before the quote. This is called escaping a character.
It’s used in a lot of languages to indicate that you mean the character
itself, not its special use.

print str(feet) + "’ " + str(inches) + "\" tall"

• Use a single quote to wrap up the string. In Python, you can use
either single quotes (’) or double quotes (") to indicate a string literal.
There’s no confusion if you have a double quote inside a single-quoted
string.

print str(feet) + "’ " + str(inches) + ’" tall’

Of course, you have to use double quotes for the string that contains a
single quote.

52 UNIT 2. PROGRAMMING BASICS

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = int(total_inches/12)

inches = int(round(total_inches - feet*12))

print "You are " + str(feet) + "’ " \

+ str(inches) + ’" tall.’

Figure 2.10: Converting to feet and inches: printing quotes

• A final trick that can be used is Python’s triple-quoted string . If you
wrap a string in three sets of double quotes, you can put anything inside
(even line breaks). This can be a handy trick if you have a lot of stuff
to print and don’t want to have to worry about escaping characters.

print str(feet) + """’ """ + str(inches) \

+ """" tall"""

This can be very cumbersome and hard to read for short strings like
this. (As you can see, it made the whole thing long enough it wouldn’t
fit on one line.) It’s more useful for long strings.

So, finally, the quotes can be printed to produce the desired output. See
Figure 2.10. When the program runs, it produces output like this:

Enter your height (in metres): 1.6

You are 5’ 3" tall.

But, there is still one problem with this program that is a little hard to
notice. What happens when somebody comes along who is 182 cm tall?

Enter your height (in metres): 1.82

You are 5’ 12" tall.

That’s not right: five feet and twelve inches should be displayed as six feet
and zero inches. The problem is with the rounding-off in the calculation. For
this input, total_inches becomes 71.6534, which is just under six feet (72
inches). Then the division to calculate feet gives a result of 5, which we
should think of as an error.

The problem isn’t hard to fix: we are just doing the rounding-off too late.
If instead of total_inches being the floating-point value 71.6534, we could

2.7. EXAMPLE PROBLEM SOLVING: FEET AND INCHES 53

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = int(round(39.37 * metres))

feet = total_inches/12

inches = total_inches - feet*12

print "You are " + str(feet) + "’ " \

+ str(inches) + ’" tall.’

Figure 2.11: Converting to feet and inches: fixed rounding error

round it off immediately to 72. That would correct this problem and it has
been done in Figure 2.11.

Now we get the right output:

Enter your height (in metres): 1.82

You are 6’ 0" tall.

This is a good lesson for you to see at this point: it’s important to test
your program carefully, since bugs can hide in unexpected places.

Check-Up Questions

◮ Download the code from this topic from the course web site and test it
with some other inputs. Do the conversion by hand and make sure the
program is working correctly.

◮ Try some “bad” inputs and see what the program does. For example, what
if the user types in a negative height? What if they type something that
isn’t a number?

Summary

There’s a lot in this unit. You should be writing your first programs and
figuring out how computers work. The example developed in Topic 2.7 is
intended to give you some idea of how the process of creating a program
might look.

When you’re learning to program, you should be writing programs. Read-
ing this Guide over and over won’t help. You should actually spend some

54 UNIT 2. PROGRAMMING BASICS

time at a computer, experimenting with the ideas presented here, learning
how to decipher error messages, and dealing with all of the other problems
that come with writing your first programs.

Key Terms

• interactive interpreter

• statement

• expression

• operator

• function

• argument

• variable

• variable assignment

• type

• conversion

• integer

• unsigned integer

• string

• ASCII

• floating point

• binary

• bit

• byte

• two’s complement

• character set

• escaping a character

