
Computing Science 120 • Study Guide

Introduction to Computing

Science and Programming I

Fall 2010 Edition

by

Greg Baker

Faculty of Applied Sciences
Simon Fraser University
c© Greg Baker, 2004–2010

2

Copyright c© 2004–2010 Greg Baker.

This work is licenced under the Creative Commons Attribution-ShareAlike
2.5 Canada License. To view a copy of this licence, visit http://creativecommons.
org/licenses/by-sa/2.5/ca/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California 94105, USA.

http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/2.5/ca/

Contents

Course Introduction 11
Learning Resources . 12

Requirements . 13

Evaluation . 14

About the Author . 15

I Computer Science and Programming 17

1 Computing Science Basics 19
1.1 What is an Algorithm? . 19

1.2 What is Computing Science? 22

1.3 What is Programming? . 25

1.4 Pseudocode . 26

Summary . 28

2 Programming Basics 29
2.1 Starting with Python . 29

2.2 Doing Calculations . 32

2.3 Storing Information . 35

2.4 Types . 36

2.5 User Input . 40

2.6 How Computers Represent Information 41

2.7 Example Problem Solving: Feet and Inches 48

Summary . 53

3

4 CONTENTS

3 Control Structures 55

3.1 Making Decisions . 55

3.2 Definite Iteration: for loops 59

3.3 Indefinite Iteration: while loops 62

3.4 Choosing Control Structures 63

3.5 Example Problem Solving: Guessing Game 65

3.6 Running Time . 70

3.7 Debugging . 77

3.8 Coding Style . 80

3.9 More About Algorithms 84

Summary . 86

4 Functions and Decomposition 89

4.1 Defining Functions . 89

4.2 Variable Scope . 94

4.3 Python Modules . 97

4.4 Objects . 98

4.5 Handling Errors . 102

Summary . 103

II Problem Solving 105

5 Data Structures 107

5.1 Lists . 107

5.2 Lists and for loops . 111

5.3 Slicing and Dicing . 112

5.4 Strings . 114

5.5 Mutability . 115

5.6 References . 117

Summary . 122

CONTENTS 5

6 Algorithms 123
6.1 Searching . 123
6.2 Sorting . 126
6.3 Recursion . 131
6.4 Designing with Recursion 135
6.5 What isn’t computable? 142

Summary . 144

7 Working with Files 147
7.1 File Output . 147
7.2 File Input . 150
7.3 The Operating System . 154
7.4 Disks and Files . 155
7.5 Example Problem Solving: File Statistics 158

Summary . 164

III Appendices 165

A Technical Instructions 167
A.1 Installing Python . 167
A.2 Using Python . 168
A.3 Computing Accounts . 171
A.4 Working in the Lab . 172

Summary . 173

6 CONTENTS

List of Figures

1.1 The “creaming method”: an everyday algorithm. 20
1.2 An algorithm that guesses a secret number between 1 and 100. 24
1.3 Figure 1.2 written in pseudocode. 26
1.4 Another pseudocode example: a digital clock 27

2.1 Prefixes for storage units. 42
2.2 The four-bit unsigned integer values. 44
2.3 Some examples of binary addition 44
2.4 The four-bit two’s complement values 45
2.5 Conversion of the string “Hi” to binary. 47
2.6 Meters to feet-inches conversion pseudocode. 49
2.7 Converting to feet and inches: number of feet. 49
2.8 Converting to feet and inches: feet and inches. 50
2.9 Converting to feet and inches: rounding inches. 51
2.10 Converting to feet and inches: printing quotes 52
2.11 Converting to feet and inches: fixed rounding error 53

3.1 Simplified guessing game . 56
3.2 Implementation of Figure 3.1 57
3.3 Pseudocode to calculate factorials 60
3.4 Using a for loop in Python 60
3.5 Calculating factorials with Python 61
3.6 Using a while loop in Python 62
3.7 Guessing game: first guess 65
3.8 Guessing game: get an answer 66
3.9 Guessing game: trying a loop 67
3.10 Guessing game: a working loop 68
3.11 Guessing game: final version 69

7

8 LIST OF FIGURES

3.12 A much worse version of the guessing game 70
3.13 Algorithm to check for repeated letters in a word 73
3.14 Repeated letters Python implementation 73
3.15 Algorithm to solve the subset-sum problem. 75
3.16 Running time of an exponential algorithm 75
3.17 Graph of the functions log

2
n, n, and n2 77

3.18 A program with poor style 82
3.19 Figure 3.18 with the style improved 83
3.20 The number 13 represented with 8 bits 85
3.21 Pseudocode to determine the 8-bit binary representation . . . 86

4.1 A program with a function defined 90
4.2 A sample function . 92
4.3 A program that takes advantage of local variables 95
4.4 Program that prints today’s date. 97
4.5 Date manipulation with the datetime module’s objects . . . 100
4.6 Catching an exception . 102
4.7 Asking until we get correct input 103

5.1 Building a list with the append method 111
5.2 Iterating over a list . 112
5.3 Manipulating strings and lists 116
5.4 Variables referencing their contents 118
5.5 Reference copied during assignment: aliasing 119
5.6 Changing either alias changes both 119
5.7 An expression creates a new reference and breaks the alias . . 120
5.8 A calculation creates a new instance containing the results . 121
5.9 Slicing a list forces copying of its elements 121

6.1 Python implementation of linear search 124
6.2 Python implementation of binary search 127
6.3 Checking for repeated letters with sorting 128
6.4 Graph of the functions n2 and n log

2
n 129

6.5 Algorithm for selection sort 131
6.6 Python implementation of selection sort 132
6.7 Recursively calculate factorials 132
6.8 Functions calls made to calculate factorial(3) 133
6.9 Pseudocode for a recursive algorithm 138

LIST OF FIGURES 9

6.10 Recursively reversing a string 139
6.11 Recursively putting spaces between characters in a string . . 141
6.12 Fooling a function that claims to solve the halting problem. . 143

7.1 Writing text to a file . 148
7.2 File created by Figure 7.1 . 148
7.3 Writing text to a file . 149
7.4 File created by Figure 7.3 . 150
7.5 Reading a text file and counting line lengths 151
7.6 Program to read a series of times in a file 153
7.7 Input file (times.txt) for Figure 7.6 153
7.8 Output of Figure 7.6 . 153
7.9 Communication between the user, applications, OS, and hard-

ware . 155
7.10 A disk divided into blocks . 157
7.11 The blocks of a file defragmented 158
7.12 Word count: open file and count lines 159
7.13 Word count test file . 159
7.14 Word count: counting characters 1 160
7.15 Word count: counting characters 2 161
7.16 Word count: final program 163

A.1 IDLE, after running a “Hello World” statement 169
A.2 IDLE, displaying a syntax error 170
A.3 IDLE, displaying a run-time error 171

10 LIST OF FIGURES

Course Introduction

[Most of the material in this introduction will apply to all offerings of CMPT 120,
but some details will vary depending on the semester and instructor. Please
check your course web site for details.]

Welcome to CMPT 120, “Introduction to Computing Science and Pro-
gramming I”. This course is an introduction to the core ideas of computing
science and the basics of programming. This course is intended for students
who do not have programming experience. If you have done a significant
amount of programming, you should take CMPT 126 instead.

This course isn’t intended to teach you how to use your computer. You
are expected to know how to use your computer: you should be comfortable
using it for simple tasks such as running programs, finding and opening files,
and so forth. You should also be able to use the Internet.

Here are some of the goals set out for students in this course. By the end
of the course, you should be able to:

• Explain some of the basic ideas of computing science.

• Explain what computer programming is.

• Create algorithms to solve simple problems.

• Implement computer programs in the Python programming language.

• Apply the core features of a programming language to solve problems.

• Design programs that are easy to understand and maintain.

Keep these goals in mind as you progress through the course.

11

12 COURSE INTRODUCTION

Learning Resources

Study Guide

The Study Guide is intended to guide you through this course. It will help
you learn the content and determine what information to focus on in the
texts.

Some suggested readings for each section are listed at the beginning of
the units. The instructor for your section of the course may modify these
readings. You should also look at the key terms listed at the end of each
unit.

In some places, there are references to other sections. A reference to
“Topic 3.4,” for example, means Topic 4 in Unit 3.

In the Study Guide, side-notes are indicated with this symbol.
They are meant to replace the asides that usually happen in lec-
tures when students ask questions. They aren’t strictly part of the
“course.”

Required Texts

The only required text for this course (besides this Study Guide) is How to

Think Like a Computer Scientist: Learning With Python. It is available from
the SFU bookstore, or you can download it from the course web site. This
book is a nice introduction to Python programming, which we will use in the
second half of the course.

The title of the book is a little misleading. The book does not discuss
computer science; it only covers computer programming. In this Guide, we
will try to cover more actual “computing science.”

Recommended Texts

There are currently no recommended texts for this course. If additional
resources are required during the semester, the instructor may recommend
other books and place them on reserve at the library.

COURSE INTRODUCTION 13

Web Materials

The web materials for this course can be found in Computing Science’s
“Course Central,” http://www.cs.sfu.ca/CC/ .

Online References

There are several online references that are as important as the texts. You
can find links to them on the course web site.

These resources are very important to your success in this course. They
aren’t meant to be read from beginning to end like the readings in the text-
book. You should use them to get an overall picture of the topic and as
references as you do the assignments.

Email Communications

The TAs and course instructor will use email to send announcements and
tips during the semester. You should read your SFU email account regularly,
at least a few times each week.

You can also contact the TAs and course instructor by email if you need
help. See the “Getting Help” section at the end of the Introduction for
details.

Requirements

Computer Requirements

You need to have access to a computer for this course. The labs on campus
or your own computer can be used. Instructions on using the labs can be
found on the course web site.

You will also need a connection to the Internet through a dial-up connec-
tion (one is provided with your SFU registration) or through another type of
connection like a cable modem or a DSL line. A high-speed connection will
make your life easier, but it isn’t required.

You should activate your SFU computing account as soon as possible if
you haven’t done so already. Instructions can be found in your registration
material.

http://www.cs.sfu.ca/CC/

14 COURSE INTRODUCTION

Software Requirements

All of the software that you need for this course can be downloaded for free.
Links to obtain the course software are on the course web site. Appendix A
contains instructions for installing and working with the Python software.

There may be some other pieces of software that you’ll need to use when
submitting your work. See the course web site for instructions on installing
and using these.

Evaluation

Marking

The marking scheme for the course will be announced in class or by email in
the first week.

Labs and Assignments

You will have weekly labs in this course. Details will be announced in class.
The labs will consist of relatively short exercises that you should be able to
complete quickly. They are intended to make sure you stay up to date with
the material in the course as it progresses.

The assignments are more involved than the labs. You will have to figure
out more on your own and explore the concepts on the course.

Exams

There will be two examinations in this course. They are closed-book, i.e.
you aren’t allowed any notes, calculators, or other aids. The exams have a
mixture of short and longer answer questions.

The 50 minute midterm exam will be held in week 7 or 8. The instructor
will announce what material will be covered in the midterm a few weeks
before. The final exam will be three hours long and will cover all of the
course material.

COURSE INTRODUCTION 15

Academic Dishonesty

We take academic dishonesty very seriously in the School of Computing Sci-
ence. Academic dishonesty includes (but is not limited to) the following:
copying another student’s assignment; allowing others to complete work for
you; allowing others to use your work; copying part of an assignment from
an outside source; cheating in any way on a test or examination.

If you are unclear on what academic dishonesty is, please read Policy
10.02. It can be found in the “Policies & Procedures” section in the SFU
web site.

Cheating on a lab or assignment will result in a mark of 0 on the piece
of work. At the instructor’s option, further penalties may be requested.
Any academic dishonesty will also be recorded in your file, as is required by
University policy.

Any academic dishonesty on the midterm or final will result in a recom-
mendation that an F be given for the course.

About the Author

The author hates writing about himself, so he isn’t going to. So there.
I’d like to thank Arsalan Butt, Yaroslav Litus and Mashaal Mamemon

who worked on the creation of this course with me in the summer of 2004.
Thanks also to Toby Donaldson, Anne Lavergne, David Mitchell, Brad Bart,
John Edgar, and all of the other faculty members around the School that
were willing to listen to an idea and, more often than not, reply with a
better one.

If you have any comments on this guide, please feel free to contact me at
ggbaker@cs.sfu.ca.

16 COURSE INTRODUCTION

Part I

Computer Science and

Programming

17

Unit 1

Computing Science Basics

Learning Outcomes

• Define the basic terms of computing science.

• Explain simple algorithms using pseudocode.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Chapter 1 in How to Think Like a Computer Scientist.

Before we start programming, we need to know a little about what com-

puting science really is.

Topic 1.1 What is an Algorithm?

The concept of an “algorithm” is fundamental to all of computing science
and programming. Stated simply, an algorithm is a set of instructions that
can be used to solve a problem.

Figure 1.1 contains one simple algorithm that you might use in everyday
life. This algorithm is used in baking and it is written in a way that most
people can understand and follow. It is used to make cookies, cakes, muffins,
and many other baked goods.

Of course, we aren’t going to spend this whole course talking about cook-
ing. (It might be more fun, but the University would get cranky if we started

19

20 UNIT 1. COMPUTING SCIENCE BASICS

1. Combine the room-temperature butter and the sugar. Mix until light and
fluffy.

2. Add the eggs to the creamed butter and mix to combine.

3. In another bowl, combine the liquid ingredients and mix to combine.

4. Sift together the flour and other dry ingredients.

5. Alternately add the dry and liquid ingredients to the butter-egg mixture.
Mix just enough to combine.

Figure 1.1: The “creaming method”: an everyday algorithm.

giving cooking lessons in CMPT courses.) Still, the algorithm in Figure 1.1
has a lot in common with the algorithms we will be looking at during this
course.

We are more interested in the kinds of algorithms that can be completed
by computers. We will spend a lot of time in this course designing algorithms
and having the computer complete them for us.

Here’s a definition of “algorithm” that most computer scientists can live
with: [Anany Levitin, Introduction to The Design & Analysis of Algorithms,
p. 3]

An algorithm is a sequence of unambiguous instructions for solv-
ing a problem, i.e., for obtaining a required output for any legit-
imate input in a finite amount of time.

There are a few words you should notice about the definition:

• unambiguous: When you read an algorithm, there should be no ques-
tion about what should be done. Is this the case in Figure 1.1?

If you understand cooking terms like “light and fluffy” and “sift to-
gether”, then you can probably follow most of this recipe. You might
have some problem with the last step: you’re supposed to “alternately”
add the dry and wet ingredients. Does that mean you should do dry-
wet-dry? Dry-wet-dry-wet-dry-wet? How many additions should you
make?

Recipes in cookbooks are often written with small ambiguities like this
either because it doesn’t matter what you do or the author is assuming

1.1. WHAT IS AN ALGORITHM? 21

that the reader will know what to do. For the record, the right thing
in this case is probably dry-wet-dry-wet-dry.

• problem: An algorithm should always present a solution to a partic-
ular problem. Each algorithm is designed with a particular group of
problems in mind.

In Figure 1.1, the problem must have been something like “Using these
ingredients, make muffins.”

• legitimate input: An algorithm might need some kind of input to do
its job. In the example problem, the inputs are the ingredients; you
have to have the correct ingredients before you can start the algorithm.

In addition to having the inputs, they have to be “legitimate”. Suppose
we start the instructions in Figure 1.1 with these ingredients: 1 can of
baby corn, 1 cup orange juice; 1 telephone. We aren’t going to get very
far. In this example, “legitimate” ingredients include sugar, eggs, flour
and butter.

If you put the wrong inputs into the algorithm, it might not be able to
deal with them.

• finite amount of time: This means that if we start the algorithm,
we had better finish it eventually.

A recipe that leaves us in the kitchen until the end of time isn’t much
good. Suppose we added this step to Figure 1.1:

6. Stir with a fork until the mixture turns into Beef Wellington.

No amount of stirring is going to make that happen. If you followed
the recipe literally, you’d be standing there stirring forever. Not good.

Many later computing science courses cover algorithms for various
problems. For example, CMPT 354 (Databases) discusses algo-
rithms for efficiently storing database information.

Data Structures

When discussing algorithms, it also becomes necessary to talk about data

structures. A data structure describes how a program stores the data it’s
working with.

22 UNIT 1. COMPUTING SCIENCE BASICS

To carry on with the cooking example, suppose you’re trying to find a
recipe for muffins. Most people have their recipes in cookbooks on a shelf.
To find the recipe, you’d probably select a likely looking book or two and
check the index of each one for the recipe you want—that’s an algorithm for
finding a recipe.

On the other hand, if you have recipes on index cards in a box (because
you’ve just copied the good recipes out of all of your books), you might have
to shuffle through the whole pile to find the one you want. If you keep the
pile in some kind of order, e.g. alphabetical by the name of the dish it makes,
you might be able to find the recipe much faster.

The point? The way you choose to store information can have a big effect
on the algorithm you need to work with it. There are many data structures
that represent different ways of storing information. We will explore a variety
of data structures later in the course.

Courses that discuss algorithms for particular problems generally
the corresponding data structures too.

Topic 1.2 What is Computing Science?

Why all this talk of algorithms? This is supposed to be a computing science
course: we should be talking about computers. Consider this quote: [Anany
Levitin, Computing Research News, January 1993, p. 7]

Computer science is no more about computers than astronomy
is about telescopes, biology is about microscopes or chemistry is
about beakers and test tubes. Science is not about tools, it is
about how we use them and what we find out when we do.

Computing science (also known as computer science) isn’t all about com-
puters. Still, there are certainly a lot of computers around. You will be using
computers in this course when you program; most computing science courses
involve using computers in one way or another.

Computing science is often defined as: [G. Michael Schneider and Judith
L. Gersting, An Invitation to Computer Science]

The study of algorithms, including

1. Their formal and mathematical properties.

1.2. WHAT IS COMPUTING SCIENCE? 23

2. Their hardware realizations.

3. Their linguistic realizations.

4. Their applications.

So, computing science is really about algorithms. We will spend a lot of
time in this course talking about algorithms. We will look at how to create
them, how to implement them, and how to use them to solve problems.

Here is a little more on those four aspects:

1. Their formal and mathematical properties: This includes asking ques-
tions like “what problems can be solved with algorithms,” “for what
problems can we find solutions in a reasonable amount of time,” and
“is it possible to build computers with different properties that would
be able to solve more problems?”

2. Their hardware realizations: One of the goals when building computers
is to make them fast. That is, they should be able to execute algo-
rithms specified by the programmer quickly. They should also make
good use of their memory and be able to access other systems (disks,
networks, printers, and so on). There are many choices that are made
when designing a computer; all of the choices have some effect on the
capabilities of the final product.

3. Their linguistic realizations: There are many ways to express algo-
rithms so a computer can understand them. These descriptions must
be written by a person and then followed by a computer. This requires
some “language” that can be understood by both people and comput-
ers. Again, there are many choices here that affect how easily both the
person and computer can work with the description.

4. Their applications: Finally, there are questions of what actual useful
things can be done algorithmically. Is it possible for a computer to un-
derstand a conversation? Can it drive a car? Can the small computers
in cell phones be made more useful? If the answer to any of these is
“yes,” then how?

Most of our algorithms won’t look much like Figure 1.1. We will focus on
algorithms that computers can follow. See Figure 1.2 for an algorithm that
is more relevant to a computing science course.

24 UNIT 1. COMPUTING SCIENCE BASICS

1. Tell the user to pick a secret number between 1 and 100.

2. The smallest possible number is 1; the largest possible is 100.

3. Make a guess that is halfway between the smallest and largest (round down
if necessary).

4. Ask the user if your guess is too large, too small or correct.

5. If they say you’re correct, the game is over.

6. If they say your guess is too small, the smallest possible number is now the
guess plus one.

7. If they say your guess is too large, the largest possible number is now the
guess minus one.

8. Unless you guessed correctly, go back to step 3.

Figure 1.2: An algorithm that guesses a secret number between 1 and 100.

The algorithm in Figure 1.2 is designed to solve the problem “guess a
secret number between 1 and 100.” It meets all of the criteria of the definition
of “algorithm” from Topic 1.1.

You may have to spend a few minutes to convince yourself that
this algorithm will always eventually guess the correct number,
thus finishing in a “finite amount of time”. It does. Try a few
examples.

This algorithm works by keeping track of the smallest and largest pos-
sibilities for the user’s secret number. At the start of the algorithm, the
number could be anywhere from 1 to 100. If you guess 50 and are told that
it’s too large, you can now limit yourself to the numbers from 1 to 49—if 50
if too large then the numbers from 51 to 100 must also be too large. This
process continues until you guess the right number.

By the end of this course, you should be able to create algorithms like
this (and more complicated ones too). You will also be able to implement
them so they can be completed by a computer.

1.3. WHAT IS PROGRAMMING? 25

Check-Up Questions

◮ Can you think of a number where the algorithm in Figure 1.2 will make 7
guesses? 8?

◮ What is “legitimate input” for the algorithm in Figure 1.2? What happens
if the user enters something else?

Topic 1.3 What is Programming?

Much of this course will focus on computer programming. What is program-
ming?

A computer program is an algorithm that a computer can understand.
This program is often referred to as an implementation. Not all algorithms
can be implemented with a computer: Figure 1.1 can’t. We’re interested in
the ones that can.

A programming language is a particular way of expressing algorithms
to a computer. There are many programming languages and they all have
different methods of specifying the parts of an algorithm. What you type in
a particular programming language to specify an algorithm is often referred
to as code.

Each programming language is designed for different reasons and they all
have strengths and weaknesses, but they share many of the same concepts.
Because of this, once you have learned one or two programming languages,
learning others becomes much easier.

Why Python?

In this course, we will be using the Python programming language. Python is
an excellent programming language for people who are learning to program.

You may be wondering why this course doesn’t teach programming in
C++ or Java. These are the languages that you probably hear about most
often.

In this course, we want you to focus on the basic concepts of programming.
This is much harder to do in Java and C++: there are too many other things
to worry about when programming in those languages. Students often get
overwhelmed by the details of the language and can’t concentrate on the
concepts behind the programs they are writing.

26 UNIT 1. COMPUTING SCIENCE BASICS

write “Think of a number between 1 and 100.”
set smallest to 1
set largest to 100
until the user answers “equal”, do this:

set guess to ⌊(smallest + largest)/2⌋
write “Is your number more, less or equal to guess?”
read answer
if answer is “more”, then

set smallest to guess + 1

if answer is “less”, then

set largest to guess − 1

Figure 1.3: Figure 1.2 written in pseudocode.

C++ and Java are very useful for creating desktop applications and other
big projects. You aren’t doing that in this course. Languages like Python
are a lot easier to work with and are well suited for smaller projects and for
learning to program.

Topic 1.4 Pseudocode

Before you start writing programs, you need a way to describe the algorithms
that you are going to implement.

This is often done with pseudocode. The prefix “pseudo-” means “almost”
or “nearly”. Pseudocode is almost code. It’s close enough to being a real
program in a programming language that it’s easy to translate, but not
so close that you have to worry about the technical details. The natural
language (English) algorithm descriptions in Figures 1.1 and 1.2 might be
accurate, but they aren’t generally written in a way that’s easy to transform
to a program.

Figure 1.3 is an example of the way we’ll write pseudocode in this course.
It is a translation of Figure 1.2.

Figure 1.3 uses the notation ⌊x⌋, which you might not have seen
before. It means “round down”, so ⌊3.8⌋ = 3 and ⌊−3.8⌋ = −4. It
is usually pronounced “floor”.

1.4. PSEUDOCODE 27

set hour to 0
set minute to 0
set second to 0
repeat forever:

set second to second + 1
if second is more than 59, then

set second to 0
set minute to minute + 1

if minute is more than 59, then

set minute to 0
set hour to hour + 1

if hour is more than 23, then

set hour to 0

write “hour :minute:second”
wait for 1 second

Figure 1.4: Another pseudocode example: a digital clock

It is usually helpful to express an algorithm in pseudocode before you
start programming. Especially as you’re starting to program, just expressing
yourself in a programming language is challenging. You don’t want to be
worrying about what you’re trying to say and how to say it at the same
time.

Writing good pseudocode will get you to the point that you at least know
what you’re trying to do with your program. Then you can worry about how
to say it in Python.

There are several computing science courses where no programming lan-
guage is used and you don’t write any code at all. If you know how to
program, it is assumed that you know how to convert pseudocode to a pro-
gram. So, the courses concentrate on pseudocode and algorithms. The rest
is easy (once you learn how to program).

There is another example of pseudocode in Figure 1.4. This algorithm
could be used to manage the display of a digital clock. It keeps track of the
current hour, minute, and second (starting at exactly midnight).

28 UNIT 1. COMPUTING SCIENCE BASICS

Summary

This unit introduced you to some of the fundamental ideas in computing
science. The ideas here are key to all of computing science.

If you’re a little fuzzy on what exactly a data structure or pseudocode is,
you don’t need to panic (yet). After you’ve written a few programs in later
units, come back to these terms and see if they make a little more sense then.

Key Terms

• algorithm

• data structure

• computing science

• computer programming

• programming language

• Python

• pseudocode

Unit 2

Programming Basics

Learning Outcomes

• Use the Python software to get programs running.

• Create programs that perform simple calculations.

• Use variables to store information in a program.

• Create programs that take input from the user.

• Explain how computers store information in binary.

• Take a simple problem and create an algorithm that solves it.

• Implement that algorithm in Python.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Chapter 2 in How to Think Like a Computer Scientist.

Topic 2.1 Starting with Python

In this course, you will be using the Python programming language. You
can download Python for free or use it in the lab. See Appendix A for more
instructions on how to use the software.

29

30 UNIT 2. PROGRAMMING BASICS

One nice feature of Python is its interactive interpreter . You can start
up Python and start typing in Python code. It will be executed immediately,
and you will see the results.

You can also type Python code into a file and save it. Then, you can run
it all at once. The interactive interpreter is generally used for exploring the
language or testing ideas. Python code in a file can be run as an application
and even double-clicked to run your program.

You will start by working with the Python interpreter. See Appendix A
for instructions on getting Python running. When you start the Python
interpreter, you’ll see something like this:

Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)

Type "help", "copyright", "credits" or "license" for

more information.

>>>

The >>> is the prompt . Whenever you see it in the interpreter, you can type
Python commands. When you press return, the command will be executed
and you will be shown the result. Whenever you see the >>> prompt in
examples, it’s an example of what you’d see in the interpreter if you typed
the code after the >>>.

For some reason, when people are taught to program, the first program
they see is one that prints the words “Hello world” on the screen. Not
wanting to rock the boat, you will do that too. Here’s what it looks like in
the Python interpreter:

>>> print "Hello world"

Hello world

The stuff after the prompt is the first line of Python code you have seen.
You could have also typed it into a text editor, named the file hello.py and
run it.

The print command in Python is used to put text on the screen. What-
ever comes after it will be printed on the screen.

Any text in quotes, like "Hello world" in the example, is called a string.
Strings are just a bunch of characters. Characters are letters, numbers,
spaces, and punctuation. Strings have to be placed in quotes to be distin-
guished from Python commands. If we had left out the quotes, Python would
have complained that it didn’t know what “Hello” meant, since there is no
built-in command called Hello.

2.1. STARTING WITH PYTHON 31

The Interpreter vs. the Editor

When you use Python’s IDLE (Integrated DeveLopment Environment), the
first window that you see is the interactive interpreter. That’s the window
with the >>> prompt where you can type Python code, press return, and see
its result. You can use this to test small sections of Python code to make
sure they do what you expect.

If you create a “New Window”, the window you create is a file editing
window. It doesn’t have a prompt or anything else. You can type Python
code here and save it as a .py file. You can run a Python .py file by double
clicking it. You can also press F5 while editing it in IDLE to run it. You
should use an editor window to write whole programs.

Check-Up Questions

◮ Type print "Hello world!" into an editor window in IDLE and save it
as hello.py file. Run it with Python.

If you’re using Windows and you run the program by double-clicking the
file, the output window might disappear before you can see the results.
You can stop this from happening by running the program in IDLE or by
waiting for the user to press return before ending the program. We’ll talk
about how to do that in the next topic.

◮ Add a few more print statements to your hello.py program (one per line).
Run it and see what happens.

Statements

If you did the “Check-Up Questions” above, you would have created a file
containing one line:

print "Hello world!"

This line is a Python statement.

Statements are the basic building blocks of Python programs. Each state-
ment expresses a part of the overall algorithm that you’re implementing. The
print statement is the first one you have seen so far, but there are many
others. Each one lets you express a different idea in such a way that the
computer can complete it.

32 UNIT 2. PROGRAMMING BASICS

When you run a Python program (i.e., code you typed in a .py file and
saved), the statements are executed in the order they appear in the file. So,
the Python program

print "Hello world!"

print "I’m a Python program that prints stuff."

. . . will produce this output:

Hello world!

I’m a Python program that prints stuff.

Topic 2.2 Doing Calculations

In order to implement the algorithm in Figure 1.3, you will need to be able
to calculate guess + 1 and ⌊(smallest + largest)/2⌋.

Python can do calculations like this. An expression is any kind of calcu-
lation that produces a result. Here are some examples of using expressions
in print statements in the Python interpreter:

>>> print 10 - 2

8

>>> print 15/3

5

>>> print 25+19*5

120

>>> print 10.2 / 2 / 2

2.55

The Python operators +, -, *, and / perform addition, subtraction, mul-
tiplication, and division, as you might expect. Note that they do order-of-
operations they way you’d expect, too:

>>> print 25+19*5

120

>>> print 25+(19*5)

120

>>> print (25+19)*5

220

2.2. DOING CALCULATIONS 33

Parentheses do the same thing they do when you’re writing math: they
wrap up part of a calculation so it’s done first. Note that a number by itself
is an expression too.

>>> print 18

18

Now, in Figure 1.3, suppose that the current value of smallest is 76 and
largest is 100. Then, we can at least do the right calculation:

>>> print (76+100)/2

88

Python can do calculations on strings too.

>>> print "An" + "Expression"

AnExpression

>>> print "An " + ’Expression’

An Expression

>>> print ’ABC’ * 4

ABCABCABCABC

Note that when you enter a string, it has to be wrapped up in quotes.
This is the only way Python can distinguish between characters that are part
of a string or part of the expression itself. In Python, single quotes (’) and
double quotes (") can be used interchangeably.

If you forget the quotes around a string, you’ll probably get an error
message:

>>> print An + ’Expression’

NameError: name ’An’ is not defined

Here, Python is telling us that it doesn’t know the word “An”. It does
know words like print and a few others. If you want to talk about a bunch
of characters as part of a string, they have to be surrounded by quotes. So,
even when a number, or anything else is in quotes, it is treated like a string
(which makes sense, since strings go in quotes):

>>> print 120 * 3

360

>>> print "120" * 3

120120120

>>> print "120 * 3"

120 * 3

34 UNIT 2. PROGRAMMING BASICS

Functions

Python can also use functions as part of expressions. These work like func-
tions in mathematics: you give the function some arguments, and something
is done to calculate the result. The result that the function gives back is
called its return value.

For example, in Python, there is a built-in function round that is used to
round off a number to the nearest integer:

>>> print round(13.89)

14.0

>>> print round(-4.3)

-4.0

>>> print round(1000.5)

1001.0

Functions can take more than one argument. The round function can
take a second argument (an optional argument) that indicates the number
of decimal places it should round to. For example,

>>> print round(12.3456, 1)

12.3

>>> print round(12.3456, 2)

12.35

>>> print round(12.3456, 5)

12.3456

In these examples, the value is rounded to the nearest 0.1, 0.01, and
0.00001. For this function, if you don’t indicate the optional argument,
its default is 0. The default value for optional arguments depends on the
function.

Functions can take any type of information as their argument and can
return any type. For example, Python’s len function will return the length
of a string, i.e. how many characters it has:

>>> print len("hello")

5

>>> print len("-<()>-")

6

>>> print len("")

0

2.3. STORING INFORMATION 35

There are many other ways to do calculations on numbers and strings than
we have seen here. You will see more as you learn more about programming.
You will see some more functions as you need them.

Check-Up Questions

◮ Try printing the results of some other expressions. Check the calculations
by hand and make sure the result is what you expect.

◮ Try some of the above string expressions, swapping the single quotes for
double quotes and vice-versa. Convince yourself that they really do the
same thing.

◮ Some of the examples above “multiply” a string by a number (like "cow"*3).
The result is repetition of the string. What happens if you multiply a num-
ber by a string (3*"cow")? What about a string by a string ("abc"*"def")?

Topic 2.3 Storing Information

You aren’t going to want to always print out the result of a calculation like
we did in Topic 2.2. Sometimes, you need to perform a calculation to be
used later, without needing to display the results right away. You might also
want to ask the user a question and remember their answer until you need
it.

For example, in the algorithm in Figure 1.2, you want to calculate values
for smallest , largest , and guess and store those results. You also need to ask
the user for their answer and store the result. You need to keep all of those
in the computer’s memory.

Whenever we need the computer to temporarily remember some infor-
mation in a program, we will use a variable. A variable is a way for you to
reserve a little bit of the computer’s memory to store the information you
need.

You will give variables names that you will use to refer to them later. For
example, if you ask the user for their age and want to store their input, you
might use a variable named “age”. The name of the variable should describe
and somehow indicate what it represents.

36 UNIT 2. PROGRAMMING BASICS

To put a value in a variable, a variable assignment statement is used.
For example, to put the result of the calculation 14/2 into a variable named
quotient,

quotient = 14/2

In a variable assignment statement, put the name of the variable you
want to change on the left, an equals sign, and the new value on the right.

You can use any expression to calculate the value that will be stored in
the variable. Variables can store any kind of information that Python can
manipulate. So far we have seen numbers and strings.

Be careful: Only the result of the calculation is stored, not the
whole calculation.

To use the value that’s stored in a variable, you just have to use its name.
If a variable name is used in an expression, it is replaced with the stored
value.

>>> num = 7

>>> word = "yes"

>>> print num - 3

4

>>> print word + word

yesyes

>>> num = 4

>>> print num - 3

1

Note that you can change the value in a variable. In the above example,
num was first set to 7 and then changed to 4. Notice that the variable num

was holding a number and word was holding a string. You can change the
kind of information a variable holds by doing a variable assignment as well.

Topic 2.4 Types

As noted above and in Topic 2.2, Python treats numbers (like 2, -10, and
3.14) differently than strings (like "abc", "-10", and ""). For example, you
can divide two numbers, but it doesn’t make sense to divide strings.

2.4. TYPES 37

>>> print 10/2

5

>>> print "abc" / 2

TypeError: unsupported operand type(s) for /: ’str’ and

’int’

Numbers and strings are two different types of information that Python can
manipulate. String variables are used to hold text or collections of characters.

In Python, a TypeError indicates that you’ve used values whose types
can’t be used with the given operation. The type of the values given to an
operator can change the way it works. In Topic 2.2, you saw that the +

operator does different things on numbers (addition) and strings (joining).
In fact, the numeric values that Python stores aren’t as simple as just

“numbers”. Have a look at this example from the Python interpreter:

>>> print 10/2

5

>>> print 10/3

3

>>> print 10.0/3

3.33333333333

Why does Python give a different answer for 10/3 than it does for 10.0/3?
The division operation does different things with integers than with floating

point values.
Integers are numbers without any fraction part. So, 10, 0, and -100 are

all integers. Numbers with fractional parts, like 3.14, -0.201, and 10.0, are
stored as floating point values. These two types are represented differently
in the computer’s memory, as we will discuss in Topic 2.6.

That’s why Python comes up with different answers for 10/3 and 10.0/3:
there are different types of values given. In the case of integer division (10/3),
the rule is that the result must be an integer. The floating point result has
its fractional part rounded down to give the integer 3. For floating point
division, the result can have a fractional part, so the result is what you’d
probably expect.

There is a built-in function called type that will tell you the type
of an object in Python. Try type(10/3) and type(10.0/3).

When implementing the pseudocode in Figure 1.3, you can actually use
this to make sure the calculation guess rounds down to the next integer.

38 UNIT 2. PROGRAMMING BASICS

Note that you can trick Python into treating a whole number like a float-
ing point number by giving it a fractional part with you type it. So 10 is an
integer (or “int” for short), but 10.0 is a floating point value (or “float”).

Type Conversion

Sometimes, you’ll find you have information of one type, but you need to
convert it to another.

For example, suppose you want to calculate the average of several integers.
You would do the same thing you would do by hand: add up the numbers
and divide by the number of numbers. Suppose you had found the sum of 10
numbers to be 46, leaving the values 46 in sum and 10 in num. If you try to
divide these numbers in Python, you’ll get the result 4, since you’re dividing
two integers. Really, you want the result 4.6, which you would get if at least
one of the values being divided was a float.

There are Python functions that can be used to change a value from one
type to another. You can use these in an expression to get the type you want.
The function int() converts to an integer, float() converts to a floating
point value, and str() converts to a string. For example,

>>> float(10)

10.0

>>> str(10)

’10’

>>> int(’10’)

10

>>> int(83.7)

83

>>> str(123.321)

’123.321’

>>> int("uhoh")

ValueError: invalid literal for int(): uhoh

As you can see, these functions will do their best to convert whatever
you give them to the appropriate type. Sometimes, that’s just not possible:
there’s no way to turn "uhoh" into an integer, so it causes an error.

In the example of calculating the average, we can do a type conversion
to get the real average:

2.4. TYPES 39

>>> total = 46

>>> num = 10

>>> print total/num

4

>>> print float(total)/num

4.6

>>> print float(total/num)

4.0

Have a closer look at the last example. Since the conversion is wrapped
around the whole calculation, only the result is converted. So, Python divides
the integers 46 and 10 to get 4. This is converted to the floating point value
4.0. In order for the floating point division to work, at least one of the
numbers going into the division must be a floating point value.

Converting numbers to strings is often handy when printing. Again,
suppose you have 46 in the variable total and you want to print out a
line like

The sum was 46.

You can print out multiple values with the comma, but they are separated
by spaces:

>>> print "The sum was", total, "."

The sum was 46 .

Note that there’s a space between the 46 and the period. You can remove
this by combining strings to get the result we want:

>>> print "The sum was " + str(total) + "."

The sum was 46.

When Python joins strings, it doesn’t add any extra spaces. You have to
convert total to a string here since Python doesn’t know how to add a
string and a number:

>>> print "The sum was " + total + "."

TypeError: cannot concatenate ’str’ and ’int’ objects

The word concatenate means “join together”. When you use the
+ on strings, it’s not really adding them, it’s joining them. That’s
called concatenation.

40 UNIT 2. PROGRAMMING BASICS

Topic 2.5 User Input

Something else you will need to do to implement the algorithm from Fig-
ure 1.3 is to get input from the user. You need to ask them if the number
they’re thinking of is larger, smaller or equal.

To do this in Python, use the raw_input function. This function will give
the user whatever message you tell it to, wait for them to type a response
and press enter, and return their response to your expression.

For example, this program will ask the user for their name and then say
hello:

name = raw_input("What is your name? ")

print "Hello, " + name + "."

If you run this program, it will display “What is your name? ” on the
screen and wait for the user to respond. Their response will be stored in the
variable name. For example,

What is your name? Julius

Hello, Julius.

If the user enters something else, that’s what will go in the name variable,

What is your name? Joey Jo-Jo

Hello, Joey Jo-Jo.

In this guide, any input that the user types will be set in bold,

like this.

Whenever you use the raw_input function, it will return a string. That’s
because as far as the interpreter is concerned, the user just typed a bunch of
characters and that’s exactly what a string is.

If you want to treat the user’s input as an integer or floating point number,
you have to use one of the type conversion functions described above. For
example, if you ask the user for their height, you really want a floating point
value, but we get a string. So, it must be converted:

m = float(raw_input("Enter your height (in metres): "))

inches = 39.37 * m

print "You are " + str(inches) + " inches tall."

When you run this program,

2.6. HOW COMPUTERS REPRESENT INFORMATION 41

Enter your height (in metres): 1.8

You are 70.866 inches tall.

In this example, the user enters the string "1.8", which is returned by
the raw_input function. That is converted to the floating point number 1.8
by the float function. This is stored in the variable m (for “metres”). Once
there is a floating point value in m, your program can do numeric calculations
with it. The number of inches is calculated and the corresponding floating
point number is stored in inches. To print this out, it is converted back to
a string with the str function. Sometimes print will do the conversion for
you, but it was done explicitly in this program.

Topic 2.6 How Computers Represent

Information

You may be wondering why you have to care about all of the different types
of values that Python can handle. Why should 25 be different from 25.0?
For that matter, how is the number 25 different from the string "25"?

The real difference here is in the way the computer stores these different
kinds of information. To understand that, you need to know a little about
how computers store information.

Binary

All information that is stored and manipulated with a computer is repre-
sented in binary, i.e. with zeros and ones. So, no matter what kind of infor-
mation you work with, it has to be turned into a string of zeros and ones if
you want to manipulate it with a computer.

Why just zeros and ones?

A computer’s memory is basically a whole bunch of tiny rechargeable
batteries (capacitors). These can either be discharged (0) or charged (1).
It’s fairly easy for the computer to look at one of these capacitors and decide
if it’s charged or not.

42 UNIT 2. PROGRAMMING BASICS

Prefix Symbol Factor

(no prefix) 20 = 1
kilo- k 210 = 1024 ≈ 103

mega- M 220 = 1048576 ≈ 106

giga- G 230 = 1073741824 ≈ 109

tera- T 240 = 1099511627776 ≈ 1012

Figure 2.1: Prefixes for storage units.

It’s possible to use the same technology to represent digits from 0 to
9, but it’s very difficult to distinguish ten different levels of charge
in a capacitor. It’s also very hard to make sure a capacitor doesn’t
discharge a little to drop from a 7 to a 6 without noticing. So,
modern computers don’t do this. They just use a simpler system
with two levels of charge and end up with zeros and ones.

Hard disks and other storage devices also use binary for similar reasons.
Computer networks do as well.

A single piece of storage that can store a zero or one is called a bit. Since
a bit is a very small piece of information to worry about, bits are often
grouped. It’s common to divide a computer’s memory into eight-bit groups
called bytes. So, 00100111 and 11110110 are examples of bytes.

When measuring storage capacity, the number of bits or bytes quickly
becomes large. Figure 2.1 show the prefixes that are used for storage units
and what they mean.

For example, “12 megabytes” is

12× 220 bytes = 12582912 bytes = 12582912× 8 bits = 100663296 bits .

Note that the values in Figure 2.1 are slightly different than the usual
meaning of the metric prefixes. One kilometre is exactly 1000 metres, not
1024 metres. When measuring storage capacities in computers, the 1024
version of the metric prefixes is usually used.

That statement isn’t entirely true. Hard drive makers, for instance,
generally use units of 1000 because people would generally prefer
a “60 gigabyte” drive to a “55.88 gigabyte” drive (60 × 1012 =
55.88× 230).

2.6. HOW COMPUTERS REPRESENT INFORMATION 43

Unsigned Integers

Once you have a bunch of bits, you can use them to represent numbers.
First, think about the way you count with regular numbers: 1, 2, 3,

4, 5. . . . Consider the number 157. What does each of the digits in that
number mean? The “1” is one hundred, “5” is five tens, and “7” is seven
ones: 157 = (1× 102) + (5× 10) + (7× 1).

As you go left from one place to the next, the value it represents is
multiplied by 10. Each digit represents the number of 1s, 10s, 100s, 1000s. . . .
The reason the values increase by a factor of 10 is that there are ten possible
digits in each place: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. This is called decimal or base
10 arithmetic. (The “dec-” prefix in latin means 10.)

Applying the same logic, there is a counting system with bits, binary or
base 2 arithmetic (“bi-” means 2). The rightmost bit will be the number of
1s, the next will be the number of 2s, then 4s, 8s, 16s, and so on. Binary
values are often written with a little 2 (a subscript), to indicate that they are
base 2 values: 1012. If there’s any possibility for confusion, base 10 values
are written with a subscript 10: 3410.

To convert binary values to decimal, do the same thing you did above,
substituting 2s for the 10s:

10012 = (1× 23) + (0× 22) + (0× 21) + (1× 20)

= 8 + 1

= 910 .

The base 2 value 10012 is equal to 910. Another example with a larger
number:

100111012 = (1× 27) + (0× 26) + (0× 25) + (1× 24) +

(1× 23) + (1× 22) + (0× 21) + (1× 20)

= 128 + 16 + 8 + 4 + 1

= 15710 .

So, 10011101 is the base 2 representation of the number 157. Any positive
whole number can be represented this way, given enough bits. All of the
values that can be represented with four bits are listed in Figure 2.2.

You should be able to convince yourself that for any group of n bits, there
are 2n different possible values that can be stored in those bits. So, n bits

44 UNIT 2. PROGRAMMING BASICS

binary decimal

1111 15
1110 14
1101 13
1100 12
1011 11
1010 10
1001 9
1000 8

binary decimal

0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0

Figure 2.2: The four-bit unsigned integer values.

1 0 1 0
+ 0 1 0 0

1 1 1 0

1

1 0 1 1
+ 0 0 1 0

1 1 0 1

1 1

1 1 0 1
+ 0 1 0 1
1 0 0 1 0

Figure 2.3: Some examples of binary addition

can represent any number from 0 to 2n − 1. Other common groupings are
of 16 bits (which can represent numbers 0 to 216 − 1 = 65535) and 32 bits
(which can represent numbers 0 to 232 − 1 = 4294967295).

The computer can do operations like addition and subtraction on binary
integers the same way you do with decimal numbers. You just have to keep
in mind that 1 + 1 = 210 = 102, so if you add two 1’s together, there is a
carry.

There are a few examples of binary addition in Figure 2.3. These corre-
spond to the decimal operations 10 + 4 = 14, 11 + 2 = 13, and 13 + 5 = 18.
You can use the familiar algorithms you know for subtraction, multiplication,
and division as well.

Positive and Negative Integers

The method described above will let us represent any positive integer in the
computer’s memory. What about negative numbers?

The bits that make up the computer’s memory must be used to represent
both positive and negative numbers. The typical method is called two’s

2.6. HOW COMPUTERS REPRESENT INFORMATION 45

binary decimal

1111 −1
1110 −2
1101 −3
1100 −4
1011 −5
1010 −6
1001 −7
1000 −8

binary decimal

0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0

Figure 2.4: The four-bit two’s complement values

complement notation. (The previous method, which can’t represent negative
values, is generally called unsigned integer representation.)

To convert a positive value to a negative value in two’s complement, you
first flip all of the bits (convert 0s to 1s and 1s to 0s) and then add one. So,
the four-bit two’s complement representation for −5 is:

start with the positive version: 0101
flip all of the bits: 1010

add one: 1011 .

All of the four-bit two’s complement values are shown in Figure 2.4. If
we use four bits, we can represent values from −8 to 7.

Here are a few other reasons computers use two’s complement notation:

• It’s easy to tell if the value is negative: if the first bit is 1, it’s negative.

• For positive numbers (values with the first bit 0), the unsigned and
two’s complement representations are identical. The values 0–7 have
the same representations in Figures 2.2 and 2.4.

• Addition and subtraction work the same way as for unsigned numbers.
Look back at Figure 2.3. If you instead interpret at the numbers as
two’s complement values, the corresponding decimal calculations are
−6 + 4 = −2, −5 + 2 = −3, and −3 + 5 = 2. (You have to ignore the
last 1 that was carried in the last example—the computer will.) They
are still correct. That means that the parts of the computer that do
calculations don’t have to know whether they have unsigned or two’s
complement values to work with.

46 UNIT 2. PROGRAMMING BASICS

• No number has more than one two’s complement representation. If
instead the first bit was used for the sign (0 = positive, 1 = negative),
then there would be two versions of zero: 0000 and 1000. This is a waste
of one representation, which wastes storage space, not to mention that
the computer has to deal with the special case that 0000 and 1000 are
actually the same value. That makes it difficult to compare two values.

Most modern computers and programming languages use 32 bits to store
integers. With this many bits, it is possible to store integers from −231 to
231 − 1 or −2147483648 to 2147483647.

So, in many programming languages, you will get an error if you try to
add one to 2147483647. In other languages, you will get −2147483648. The
analogous calculation with four bits is 7 + 1:

1 1 1

0 1 1 1
+ 0 0 0 1

1 0 0 0

If these were unsigned values, this is the right answer. But, if you look in
Figure 2.4, you’ll see that 1000 represents −8. If this overflow isn’t caught
when doing two’s complement, there’s a “wraparound” that means you can
suddenly go from a large positive number to a large negative one, or vice-
versa.

In Python, you don’t generally see any of this. Python will automatically
adjust how it represents the numbers internally and can represent any integer.
But, if you go on to other languages, you will eventually run into an integer
overflow.

Another type of numbers is the floating point value. They have to be
stored differently because there’s no way to store fractional parts with two’s
complement. Floating point representation is more complicated; it is beyond
the scope of this course.

Characters and Strings

The other types of information that you have seen in your Python experience
are characters and strings. A character is a single letter, digit or punctuation
symbol. A string is a collection of several characters. So, some characters are
T, $, and 4. Some strings are "Jasper", "742", and "bhay-gn-flay-vn".

2.6. HOW COMPUTERS REPRESENT INFORMATION 47

H

72

01001000 01101001

105

i
(ASCII chart lookup)

(conversion to binary)

Figure 2.5: Conversion of the string “Hi” to binary.

Storing characters is as easy as storing unsigned integers. For a byte (8
bits) in the computer’s memory, there are 28 = 256 different unsigned num-
bers: 0–255. So, just assign each possible character a number and translate
the numbers to characters.

For example, the character T is represented by the number 84, the charac-
ter $ by 36, and 4 by 52. This set of translations from numbers to characters
and back again is called a character set. The particular character set that is
used by almost all modern computers, when dealing with English and other
western languages, is called ASCII. The course web site contains links to a
full list of ASCII characters, if you’d like to see it.

So, in order to store the character T in the computer’s memory, first
look up its number in the character set and get 84. Then, use the method
described for unsigned integers to convert the number 84 to an 8-bit value:
01010100. This can then be stored in the computer’s memory.

With only one byte per character, we can only store 256 different char-
acters in our strings. This is enough to represent English text, but it starts
to get pretty hard to represent languages with accents (like á or ü). It’s just
not enough characters to represent languages like Chinese or Japanese.

The Unicode character set was created to overcome this limitation. Uni-
code can represent up to 232 characters. This is enough to represent all of
the written languages that people use. Because of the number of possible
characters, Unicode requires more than one byte to store each character.

In ASCII, storing strings with several characters, can be done by using a
sequence of several bytes and storing one character in each one. For example,
in Figure 2.5, the string “Hi” is converted to binary.

In Figure 2.5, the binary string 0100100001101001 represents “Hi” in
ASCII. But, if you look at this chunk of binary as representing an integer,

48 UNIT 2. PROGRAMMING BASICS

it’s the same as 18537. How does the computer know whether these two
bytes in memory are representing the string “Hi” or the number 18537?

There actually isn’t any difference as far as the computer itself is con-
cerned. Its only job is to store the bits its given and do whatever calculations
it’s asked to do. The programming language must keep track of what kind
of information the different parts of the memory are holding. This is why
the concept of types is so important in Python. If Python didn’t keep track
of the type of each variable, there would be no way to tell.

In some programming languages, C in particular, you can work
around the type information that the programming language is
storing. For example, you could store the string “Hi” and then
later convince the computer that you wanted to treat that piece of
memory like a number and get 18537. This is almost always a bad
idea.

How computers represent various types of information is some-
times quite important when programming. It is also discussed in
CMPT 150 (Computer Design) and courses that cover how pro-
gramming languages work like CMPT 379 (Compiler Design).

Topic 2.7 Example Problem Solving: Feet

and Inches

Back in Topic 2.5, there was a program that converted someone’s height in
metres to inches:

Enter your height (in metres): 1.6

You are 62.992 inches tall.

But, people don’t usually think of their height in terms of the number of
inches. It’s much more common to think of feet and inches. It would be
better if the program worked like this:

Enter your height (in metres): 1.6

You are 5’ 3" tall.

2.7. EXAMPLE PROBLEM SOLVING: FEET AND INCHES 49

write “Enter your height (in metres):”
read metres
set totalinches to 39.37×metres
set feet to ⌊totalinches/12⌋
set inches to totalinches − feet × 12
round inches to the nearest integer
write “You are feet ′ inches ′′ tall.”

Figure 2.6: Meters to feet-inches conversion pseudocode.

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = total_inches/12

print "You are " + str(feet) + " feet tall."

Figure 2.7: Converting to feet and inches: number of feet.

The notation 5′ 3′′ is used to indicate “5 feet and 3 inches”, which is 5×12+
3 = 63 inches.

To do this conversion, convert the number of metres to inches, as done
in Topic 2.5, by multiplying by 39.37. Then, determine how many feet and
inches there are in the total number of inches. The pseudocode is shown in
Figure 2.6.

When you’re converting an idea for an algorithm to code, you shouldn’t
try to do it all at once, especially when you’re first learning to program.
Implement part of the algorithm first, then test the program to make sure
it does what you expect before you move on. Trying to find problems in a
large chunk of code is very hard: start small.

Start writing a Python program to implement the pseudocode in Fig-
ure 2.6. You can grab the first few lines from the program in Topic 2.5.
Then, try to calculate the number of feet. This has been done in Figure 2.7.

Note that when you run this program, it calculates the number of feet as
a floating point number:

Enter your height (in metres): 1.6

You are 5.24933333333 feet tall.

50 UNIT 2. PROGRAMMING BASICS

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = int(total_inches/12)

inches = total_inches - feet*12

print "You are " + str(feet) + " feet and " \

+ str(inches) + " inches tall."

Figure 2.8: Converting to feet and inches: feet and inches.

This makes sense, given what we know about types: when Python divides
a floating point value (metres), it returns a floating point value. But in the
algorithm, you need an integer and it needs to be rounded down to the next
integer. This is what the int function does when it converts floating point
numbers to integers, so you can use that to get the correct value in feet.

If you have a statement in Python that you want to split across
multiple lines, so it’s easier to read, you can end the line with a
backslash, “\”. This was done in Figures 2.7 and 2.8, so the code
would fit on the page.

Once you have the correct number of feet as an integer, you can calculate
the number of inches too. This is done in Figure 2.8.

This program does the right calculation, but leaves the number of inches
as a floating point number:

Enter your height (in metres): 1.6

You are 5 feet and 2.992 inches tall.

To convert the number of inches to an integer, you can’t use the int

function, which would always round down. You shouldn’t get 5′ 2′′ in the
above example; you should round to the nearest integer and get 5′ 3′′.

You can use the round function for this. Note that round does the round-
ing, but leaves the result as a floating point value. You will have to use the
int function to change the type, but the value will already be correct.

See Figure 2.9 for the details. When you run this program, the output is
almost correct:

Enter your height (in metres): 1.6

You are 5 feet and 3 inches tall.

2.7. EXAMPLE PROBLEM SOLVING: FEET AND INCHES 51

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = int(total_inches/12)

inches = int(round(total_inches - feet*12))

print "You are " + str(feet) + " feet and " \

+ str(inches) + " inches tall."

Figure 2.9: Converting to feet and inches: rounding inches.

The last thing you have to do to get the program working exactly as
specified at the start of the topic is to print out the feet and inches in the
proper format: 5′ 3′′. This presents one last problem. You can’t just print
double quotes, since they are used to indicate where the string literal begins
and ends. Code like this will generate an error:

print str(feet) + "’ " + str(inches) + "" tall"

The interpreter will see the "" and think it’s an empty string (a string with
no characters in it). Then, it will be very confused by the word “tall”. The
solution is to somehow indicate that the quote is something that it should
print, not something that’s ending the string. There are several ways to do
this in Python:

• Put a backslash before the quote. This is called escaping a character.
It’s used in a lot of languages to indicate that you mean the character
itself, not its special use.

print str(feet) + "’ " + str(inches) + "\" tall"

• Use a single quote to wrap up the string. In Python, you can use
either single quotes (’) or double quotes (") to indicate a string literal.
There’s no confusion if you have a double quote inside a single-quoted
string.

print str(feet) + "’ " + str(inches) + ’" tall’

Of course, you have to use double quotes for the string that contains a
single quote.

52 UNIT 2. PROGRAMMING BASICS

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = 39.37 * metres

feet = int(total_inches/12)

inches = int(round(total_inches - feet*12))

print "You are " + str(feet) + "’ " \

+ str(inches) + ’" tall.’

Figure 2.10: Converting to feet and inches: printing quotes

• A final trick that can be used is Python’s triple-quoted string . If you
wrap a string in three sets of double quotes, you can put anything inside
(even line breaks). This can be a handy trick if you have a lot of stuff
to print and don’t want to have to worry about escaping characters.

print str(feet) + """’ """ + str(inches) \

+ """" tall"""

This can be very cumbersome and hard to read for short strings like
this. (As you can see, it made the whole thing long enough it wouldn’t
fit on one line.) It’s more useful for long strings.

So, finally, the quotes can be printed to produce the desired output. See
Figure 2.10. When the program runs, it produces output like this:

Enter your height (in metres): 1.6

You are 5’ 3" tall.

But, there is still one problem with this program that is a little hard to
notice. What happens when somebody comes along who is 182 cm tall?

Enter your height (in metres): 1.82

You are 5’ 12" tall.

That’s not right: five feet and twelve inches should be displayed as six feet
and zero inches. The problem is with the rounding-off in the calculation. For
this input, total_inches becomes 71.6534, which is just under six feet (72
inches). Then the division to calculate feet gives a result of 5, which we
should think of as an error.

The problem isn’t hard to fix: we are just doing the rounding-off too late.
If instead of total_inches being the floating-point value 71.6534, we could

2.7. EXAMPLE PROBLEM SOLVING: FEET AND INCHES 53

metres = float(raw_input(\

"Enter your height (in metres): "))

total_inches = int(round(39.37 * metres))

feet = total_inches/12

inches = total_inches - feet*12

print "You are " + str(feet) + "’ " \

+ str(inches) + ’" tall.’

Figure 2.11: Converting to feet and inches: fixed rounding error

round it off immediately to 72. That would correct this problem and it has
been done in Figure 2.11.

Now we get the right output:

Enter your height (in metres): 1.82

You are 6’ 0" tall.

This is a good lesson for you to see at this point: it’s important to test
your program carefully, since bugs can hide in unexpected places.

Check-Up Questions

◮ Download the code from this topic from the course web site and test it
with some other inputs. Do the conversion by hand and make sure the
program is working correctly.

◮ Try some “bad” inputs and see what the program does. For example, what
if the user types in a negative height? What if they type something that
isn’t a number?

Summary

There’s a lot in this unit. You should be writing your first programs and
figuring out how computers work. The example developed in Topic 2.7 is
intended to give you some idea of how the process of creating a program
might look.

When you’re learning to program, you should be writing programs. Read-
ing this Guide over and over won’t help. You should actually spend some

54 UNIT 2. PROGRAMMING BASICS

time at a computer, experimenting with the ideas presented here, learning
how to decipher error messages, and dealing with all of the other problems
that come with writing your first programs.

Key Terms

• interactive interpreter

• statement

• expression

• operator

• function

• argument

• variable

• variable assignment

• type

• conversion

• integer

• unsigned integer

• string

• ASCII

• floating point

• binary

• bit

• byte

• two’s complement

• character set

• escaping a character

Unit 3

Control Structures

Learning Outcomes

• Design algorithms that use decision making and implement them in
Python.

• Design algorithms that use iteration and implement them in Python.

• Given an algorithm, approximate its running time.

• Find and fix bugs in small programs.

• Create algorithms for more complex problems.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Sections 4.2–4.7, 6.2–6.4, 1.3, Appendix A in How to Think Like

a Computer Scientist.

Topic 3.1 Making Decisions

All of the code we have written so far has been pretty simple. It all runs
from top to bottom, and every line executes once as it goes by. The process
soon becomes boring. It’s also not very useful.

55

56 UNIT 3. CONTROL STRUCTURES

write “Think of a number between 1 and 10.”
set guess to 6.
write “Is your number equal to guess?”
read answer
if answer is “yes”, then

write “I got it right!”

if answer isn’t “yes”, then

write “Nuts.”

write “That’s the end of the game.”

Figure 3.1: Simplified guessing game

In the guessing game example from Figure 1.3, we need to decide if the
user has guessed correctly or not and then take the appropriate action. Al-
most every program you write to solve a real problem is going to need to do
this kind of thing.

There are a few ways to make decisions in Python. We’ll only explore
one of them here.

The if statement

The most common way to make decisions in Python is by using the if

statement. The if statement lets you ask if some condition is true. If it is,
the body of the if will be executed.

For example, let’s simplify the guessing game example from Figure 1.3.
In the simplified version, the user things of a number from 1 to 10 and
the computer only takes one guess. Pseudocode for this game is shown in
Figure 3.1.

Some Python code that implements Figure 3.1 can be found in Figure 3.2.
Here are two example executions of the program:

Think of a number between 1 and 10.

Is your number equal to 6? no

Nuts.

That’s the end of the game.

Think of a number between 1 and 10.

Is your number equal to 6? yes

3.1. MAKING DECISIONS 57

print "Think of a number between 1 and 10."

guess = 6

answer = raw_input("Is your number equal to " \

+ str(guess) + "? ")

if answer == "yes":

print "I got it right!"

if answer != "yes":

print "Nuts."

print "That’s the end of the game."

Figure 3.2: Implementation of Figure 3.1

I got it right!

That’s the end of the game.

As you can see from these examples, only one of the print statements
inside of the if is executed. The if statement is used to make a decision
about whether or not some code should be executed.

The condition is used to decide what to do. The two conditions in Fig-
ure 3.2 are answer == "yes" and answer != "yes". These mean “answer
is equal to yes” and “answer is not equal to yes,” respectively. We will look
more at how to construct conditions later.

The indented print statements are not executed when the if condition
is false. These statements make up the body of each if statement. The last
print is executed no matter what: it isn’t part of the if.

In Python (unlike many programming languages), the amount of space
you use is important. The only way you can indicate what statements are
part of the if body is by indenting, which means you’ll have to be careful
about spacing in your program.

All block statements in Python (we’ll be seeing more later) are indented
the same way. You start the block and then everything that’s indented after
it is the body of the block. When you stop indenting, the block is over.

How much you indent is up to you, but you have to be consistent. Most
Python programmers indent 4 spaces and all of the example code for this
course is written that way.

58 UNIT 3. CONTROL STRUCTURES

Boolean Expressions

The expressions that are used for if conditions must be either true or false.
In Figure 3.2, the first condition is answer == "yes" , and it evaluates to
true when the value stored in answer is "yes".

These conditions are called boolean expressions. The two boolean values

are True and False. A boolean expression is any expression that evaluates
to true or false.

To check to see if two values are equal, the == operator is used and != is
the not equal operator.

>>> if 4-1==3:

print "Yes"

Yes

You have to press an extra Enter in this example after the print

statement. In the Python interpreter, the extra blank line is used
to tell it you’re done the block.

The less than sign (<) and greater than sign (>) do just what you’d expect.
For <, if the left operand is less than the right operand, it returns true. There
are also boolean operators less than or equal (<=), and greater than or equal
(>=).

Note the difference between = and ==. The = is used for variable assign-
ment; you’re telling Python to put a value into a variable. The == is used
for comparison—you’re asking Python a question about the two operands.
Python won’t let you accidentally use a = as part of a boolean expression,
for this reason.

Functions and methods can also return True or False. For example,
strings have a method islower that returns True if all of the characters in
the string are lower case (or not letters):

>>> s="Hans"

>>> s.islower()

False

>>> s="hans"

>>> s.islower()

True

3.2. DEFINITE ITERATION: FOR LOOPS 59

The else clause

In Figure 3.2, we wanted to take one action if the user answered "yes" and
another if they answered anything else. It could also have been written in
the following way:

if answer == "yes":

print "I got it right!"

else:

print "Nuts."

The else clause is executed if the if condition is not true.
In the if statement, you can specify an else clause. The purpose of the

else is to give an “if not” block of code. The else code is executed if the
condition in the if is false.

It is also possible to allow more possibilities with elif blocks. The elif
is used as an “else if” option. In Figure 3.2, we could have done something
like this:

if answer == "yes":

print "I got it right!"

elif answer == "no":

print "Nuts."

else:

print "You must answer ’yes’ or ’no’."

Here, the logic of the program changes a little. They have to answer “yes”
or “no”. If they answer anything else, they get an error message.

Any number of elifs can be inserted to allow for many possibilities.
Whenever an if. . . elif. . . elif. . . else structure is used, only one of the
code bodies will be executed. The else will only execute if none of the
conditions are true.

Topic 3.2 Definite Iteration: for loops

We are still missing one major concept in computer programming. We need
to be able to execute the same code several times (iterate). There are several
ways to iterate in most programming languages. We will discuss two ways
you can use in Python: for and while loops.

60 UNIT 3. CONTROL STRUCTURES

write “Enter a nonnegative integer:”
read n
set factorial to 1
do this for i equal to each number from 1 to n:

set factorial to factorial × i

write factorial

Figure 3.3: Pseudocode to calculate factorials

num = int(raw_input("How high should I count? "))

for i in range(num):

print i,

Figure 3.4: Using a for loop in Python

The for loop

In some problems, you know ahead of time how many times you want to
execute some code. For example, suppose we want to calculate factorials. If
you haven’t run across factorials before, “n factorial” is written “n!” and is
the product of all of the number from 1 to n:

n! = 1× 2× 3× · · · × (n− 1)× n .

We can write a program to calculate factorials and we’ll know that we
have to do n multiplications. Figure 3.3 contains pseudocode to calculate
factorials.

In Python, if you have a problem like this where you know before you
start iterating how many times you’ll have to loop, you can use a for loop.

Loops where you know how many times you’re going to loop when
you start are called definite loops. Well, they are in textbooks. Ev-
erybody else just calls them “for loops”. Isn’t Computing Science
fun?

Before we try to implement a factorial program from Figure 3.3, let’s
explore the for loop a little. The program in Figure 3.4 uses a for loop to
count as high as the user asks.

3.2. DEFINITE ITERATION: FOR LOOPS 61

n = int(raw_input("Enter a nonnegative integer: "))

factorial = 1

for i in range(n):

factorial = factorial * (i+1)

print factorial

Figure 3.5: Calculating factorials with Python

The easiest way to construct a for loop is with the range function. When
a for loop is given range(x), the loop body will execute x times. Figure 3.4
will look like this when it’s executed:

How high should I count? 12

0 1 2 3 4 5 6 7 8 9 10 11

Notice that the range starts from zero and counts up to num − 1. If we
wanted to count from one, we could have written the loop like this:

for i in range(num):

print i+1,

We will have to do this when implementing the factorial algorithm since we
need the values from 1 to n, not from 0 to n− 1.

Here are the details of what happens when that loop runs: The given
range, range(num), will cause the loop to repeat num times; the range rep-
resents the integers 0, 1, 2, . . . , num-1. The loop variable (i) will be set to
the first value in the range (0), and the loop body (the print statement) is
executed. The body is then repeated for each of the other values in the range
(1, 2, . . . , num-1).

Figure 3.5 contains a program program that calculates n! .

For some strange historical reason, i is a common choice for the
for loop variable if nothing else is appropriate. You should choose
a descriptive variable name where possible, but for quick, short
loops, i is a good default.

62 UNIT 3. CONTROL STRUCTURES

name = raw_input("What is your name? ")

while name=="":

name = raw_input("Please enter your name: ")

print "Hello, " + name

Figure 3.6: Using a while loop in Python

Topic 3.3 Indefinite Iteration: while loops

If you don’t know how many times you want the loop body to execute,
the for loop is hard to work with. For example, in the guessing game in
Figure 1.3, we just have to keep guessing until we get it right. That could be
anywhere from 1 to 7 guesses. We will finally implement the guessing game
in Topic 3.5.

In Python, you can do this with a while loop. To construct a while loop,
you use a condition as you did in a if statement. The body of the loop will
execute as many times as necessary until the condition becomes false.

For example, the program in Figure 3.6 will ask the user to enter his or
her name. If a user just presses enter, the program will keep asking until the
user provides a response. It looks like this when it’s executed:

What is your name?

Please enter your name:

Please enter your name:

Please enter your name: Sherri

Hello, Sherri

When the while loop runs, these steps are repeated:

1. Check the value of the loop condition. If it’s False, the loop exits, and
the program moves on to the following code.

2. Run the loop body.

Basically, the while loop uses its condition to ask “should I keep going?” If
so, it runs the loop once more and asks again.

3.4. CHOOSING CONTROL STRUCTURES 63

When you use an indefinite loop, you have to make sure that the loop
condition eventually becomes false. If not, your program will just sit there
looping forever. This is called an infinite loop.

You’ll write an infinite loop sooner or later. Press control-C to stop
the Python interpreter when you get tired of waiting for infinity.

Topic 3.4 Choosing Control Structures

When you’re starting to program, you may find it difficult to decide which
control structure(s) to use to get a particular result. This is something that
takes practice and experience programming. Once you figure out how to
really work with these control structures, it become easier.

There aren’t any rigid rules here. There are often many ways to do the
same thing in a program, especially as things get more complicated. Below
are a few guidelines.

Before you can choose a control structure, you need to have a pretty good
idea what you want the computer to do: you need to have an algorithm in
mind. Once you do, you can then think about how to get a program to do
what you want.

• Just do it. Remember that most statements in Python (and most other
programming languages) are executed in the order that they appear.
So, a variable assignment, or print statement will execute right after
the statement before (unless a control structure changes how things
run).

These statements tell the computer what you want to do. The control
structures let you express when it will happen. (Sort of. Don’t take
that too literally.)

• Maybe do it. If you have some code that you want to execute only in a
particular situation, then a conditional (if statement) is appropriate.
An if will run its body zero times or one time. If you need to do
similar things more than once, you should be looking at a loop.

If the logic you need is “either this or that,” then you should use if

with an else clause. If you need to do “one of these things,” then use
the if. . . elif. . . elif. . . else form.

64 UNIT 3. CONTROL STRUCTURES

In any of these cases, you need to come up with a boolean expression
that describes when it’s appropriate to do each case. This again takes
practice. The goal is to use the variables you have and the boolean
operators to come up with something that is true exactly when you
want the code to run.

• Do it several times. When you need to do something several times,
you need a loop. Remember that the loops can execute zero, one, or
more times, depending on exactly how you’ve expressed things (and
the values of variables, and what the use types, and so on).

Note that the task done in the body of the loop doesn’t have to be
exactly the same every time through. You can use the loop variable
(in a for loop) and any other variables in your program to keep track
of what should be done this time through the loop. For example, you
might want to examine the loop variable to see if it has a particular
property and print it to the screen if it does. To do this, you would
use a if statement in the loop, and write a condition that expresses
the property you’re looking for.

• Do it this many times. If you know when you start the loop how many
times it will run (for example, count up to a certain number, or run
once for every item in a collection), you can use a for loop.

For now, all of our for loops will loop over a range of numbers. In
Topic 5.2, you will see that for can be used to loop over other items.

Note that you don’t need to know how many times you’ll loop when
you’re writing the program. The size of the range can be an expression
that’s calculated from user input, or anything else. You just need to
be able to figure this out when the program gets to the for loop.

If you do a calculation and end up looping over range(0), the body of
the for loop will run zero times.

• Do it until it’s done. There are often situations when you can’t tell how
many times to loop until you notice that you’re done. These are usually
of the form “keep doing this until you’re done; you’re done when this

happens.”

In these cases, you probably need a while loop. A while loop is similar
to an if in that you need to write a boolean expression that describes

3.5. EXAMPLE PROBLEM SOLVING: GUESSING GAME 65

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

guess = (smallest + largest) / 2

print "My first guess is " + str(guess) + "."

Figure 3.7: Guessing game: first guess

when to “go”. Unlike a if, a while loop will execute the body repeat-
edly, until its condition is false.

When writing the condition for a while loop, you need to figure out
how the computer will determine that you still have more work to do
before the loop is finished. Often, this is “I need to take another step
if. . . ”. The body of the while is then the code necessary to do a “step”.

Once again, finding the control structure to express what you want to do
does take some practice, and there aren’t really any rules. But, hopefully
the above will give you something to start with.

Topic 3.5 Example Problem Solving:

Guessing Game

In Unit 1, we introduced the guessing game algorithm. It guessed a number
from 1 to 100 that the user was thinking. Working from the pseudocode
in Figure 1.3, we now have all of the tools we need to write a program
implementing this algorithm.

As we saw in the first problem solving example in Topic 2.7, you shouldn’t
try to write the whole program at once and just hope it will work. You should
test as you write.

The program in Figure 3.7 starts the game and makes the first guess.
This will let us test the expression to calculate guess first. We can change
the initial values for smallest and largest and make sure guess is always
halfway between.

Now that we can make one guess, we can combine this with an if state-
ment to ask the user whether or not we’re right. This is similar to Figure 3.2.
This is done in Figure 3.8.

66 UNIT 3. CONTROL STRUCTURES

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print smallest, largest

Figure 3.8: Guessing game: get an answer

We can check this program and make sure our logic is right. Have we
accidentally interchanged what should be done in the two cases? Suppose
we’re thinking of 80:

Think of a number from 1 to 100.

Is your number ’more’, ’less’, or ’equal’ to 50? more

51 100

Now, the program will be guessing numbers from 51 to 100, which is the
right range. On the other side, if we were thinking of 43,

Think of a number from 1 to 100.

Is your number ’more’, ’less’, or ’equal’ to 50? less

1 49

Since 43 is in the range 1–49, we are still on the right track.
Now, we can put this into a loop and keep guessing until we get it right.

By directly translating out pseudocode, we would get something like Fig-
ure 3.9.

But, if you try to run this program, you’ll see an error like this:

Think of a number from 1 to 100.

Traceback (most recent call last):

File "C:/Python23/guess3.py", line 4, in -toplevel-

while answer != "equal":

NameError: name ’answer’ is not defined

3.5. EXAMPLE PROBLEM SOLVING: GUESSING GAME 67

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

while answer != "equal":

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print smallest, largest

print "I got it!"

Figure 3.9: Guessing game: trying a loop

This happens because we have tried to use the value in the variable answer

before ever putting anything into it. In Python, variables don’t exist until
you put a value in them with a variables assignment, using =. So, when we
try to use the value in answer in the while loop’s condition, the variable
doesn’t exist. Python doesn’t have anything to use with the name answer

so it generates a NameError.

This is a good example of problems that can come up when translating
pseudocode into a programming language. There isn’t always a nice, neat
translation; you have to work with the language you’re writing your program
in. This is also part of the reason it’s a good idea to write pseudocode in the
first place: it’s easier to work out the algorithm without fighting with the
programming language.

In order to get around this, we have to get something in the variable
answer before we try to use its value. We could copy the two statements
that assign values to guess and answer outside of the loop, but that could
be a little hard to work with later: if we have to fix the code, we have to fix
two things instead of one.

The easiest thing to do is just put a dummy value in answer so the
variable exists, but we’re still sure the condition is false. This has been done

68 UNIT 3. CONTROL STRUCTURES

print "Think of a number from 1 to 100."

smallest = 1

largest = 100

answer = ""

while answer != "equal":

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print smallest, largest

print "I got it!"

Figure 3.10: Guessing game: a working loop

in Figure 3.10.

Let’s try this program. Suppose we’re thinking of the number 43 and
play the game:

Think of a number from 1 to 100.

Is your number ’more’, ’less’, or ’equal’ to 50? less

1 49

Is your number ’more’, ’less’, or ’equal’ to 25? more

26 49

Is your number ’more’, ’less’, or ’equal’ to 37? more

38 49

Is your number ’more’, ’less’, or ’equal’ to 43? equal

38 49

I got it!

There is still some extra output that we can use while testing the program.
After each guess, it prints out the current range of numbers it’s considering
(the lines like 26 49). Don’t be afraid to print out extra stuff like this to
help you figure out exactly what your program’s doing while testing.

Notice that in Figure 3.10, we have a if block inside of a while loop.

3.5. EXAMPLE PROBLEM SOLVING: GUESSING GAME 69

print "Think of a number from 1 to 100."

start with the range 1-100

smallest = 1

largest = 100

initialize answer to prevent NameError

answer = ""

while answer != "equal":

make a guess

guess = (smallest + largest) / 2

answer = raw_input("Is your number ’more’, ’less’," \

" or ’equal’ to " + str(guess) + "? ")

update the range of possible numbers

if answer == "more":

smallest = guess + 1

elif answer == "less":

largest = guess - 1

print "I got it!"

Figure 3.11: Guessing game: final version

If you want to do that, or include a loop in a loop, or an if in an if, just
increase the amount of indenting so the inside block is indented more.

Finally, we have a working guessing game program. A final polished
version has been created in Figure 3.11.

You’ll notice in Figure 3.11 that we have added some comments to the
code. In Python, comments are on lines that start with a #.

Comments let you include information that is meant only for the pro-
grammer. The Python interpreter ignores comments. They are used only
to make code easier to understand. You should be in the habit of writing
comments on sections of code that briefly describe what the code does.

70 UNIT 3. CONTROL STRUCTURES

write “Think of a number between 1 and 100.”
set guess to 1
until the user answers “equal”, do this:

write “Is your number equal to or not equal to guess?”
read answer
set guess to guess + 1

Figure 3.12: A much worse version of the guessing game

Topic 3.6 Running Time

In this section, we will explore how long it takes for algorithms to run. The
running time of an algorithm will be part of what determines how fast a
program runs. Faster algorithms mean faster programs, often much faster,
as we will see.

The running time of algorithms is a very important aspect of computing
science. We will approach it here by working through some examples and
determining their running time.

The Guessing Game

When you were experimenting with the guessing game algorithm and pro-
gram in Topics 1.4 and 3.5, you probably tried the game with a few different
numbers. Hopefully, you noticed that this algorithm focuses in on the num-
ber you’re guessing quite quickly. It takes at most seven guesses to get your
number, no matter which one you’re thinking of.

Suppose we had written the program from the pseudocode in Figure 3.12.

This algorithm starts at zero and guesses 1, 2, 3, . . . , until the user
finally enters “equal”. It does solve the “guess the number between 1 and
100” problem and it meets the other criteria in the definition of an algorithm.

What’s different about this algorithm is the amount work it has to do to
finish. Instead of at most seven guesses, this algorithm requires up to 100.
Obviously, if we’re trying to write a fast program, an algorithm that requires
seven steps to solve a problem is much faster than one that takes 100.

Suppose we were writing a guessing game that guessed a number from 1
to n. The value of n could be determined when we write the program or by

3.6. RUNNING TIME 71

asking the user for the “size” of the game before we start. How many steps
would each algorithm take if we modified it to guess a number from 1 to n?

The algorithm in Figure 3.12 would take up to n steps (if the user was
thinking of n).

The number of guesses needed by the original algorithm from Figure 1.3
is a little harder to figure out. Each time the algorithm makes a guess, it
chops the range from smallest to largest in half. The number of times we can
cut the range 1–n in half before getting down to one possibility is ⌈log

2
n⌉.

The notation ⌈x⌉ means “round up”. It’s the opposite of the floor
notation, ⌊x⌋ and is usually pronounced “ceiling”.

The mathematical expression log
2
n is the “base-2 logarithm of

n”. It’s the power you have to raise 2 to to get n. So, if we let
x = log

2
n, then it’s always true that 2x = n.

Having a running time around log
2
n steps is good since it grows so slowly

when n increases:

log
2
1 = 0 ,

log
2
16 = 4 ,

log
2
1024 = 10 ,

log
2
1048576 = 20 .

We could give this program inputs with n = 1000000 and it would still only
take about 20 steps.

Why does this algorithm take about log
2
n steps? Consider the number of

possible values that could still be the value the user is thinking of. Remember
that this algorithm cuts the number of possibilities in half with each step.

Step Possible values
0 n = n/20

1 n/2 = n/21

2 n/4 = n/22

3 n/8 = n/23

k n/2k

72 UNIT 3. CONTROL STRUCTURES

In the worst case, the game will end when there is only one possibility left.
That is, it will end after k steps, where

1 = n/2k

2k = n

log
2
2k = log

2
n

k = log
2
n .

So, it will take log
2
n steps.

Basically, any time you can create an algorithm like this that cuts the
problem in half with every iteration, it’s going to be fast.

Remember: any time you have a loop that cuts the problem in half
with each iteration, it will loop log n times. If you understand the
above derivation, good. If you’d just like to take it on faith, that’s
fine too.

Repeated Letters

Now consider the algorithm in Figure 3.13. It will check a word (or any
string, really) to see if any character is repeated anywhere. For example, the
word “jelly” has a repeated “l”; the word “donuts” has no repeated letters.
This algorithm works by taking leach letter in the word, one at a time, and
checking each letter to the right to see if its the same.

For example, with the word “Lenny”, it will make these comparisons:

L is compared with e, n, n, y (none are equal)
e is compared with n, n, y (none are equal)
n is compared with n, y (equals the “n”)
n is compared with y (none are equal)
y is compared with nothing

In the third line, it will compare the first and second “n” and notice that
they are equal. So, this word has repeated letters.

You can find a Python implementation of this program in Figure 3.14.
The only new thing in this program: you can get character n out of a string
str by using the expression str[n]. This is called string subscripting. Note
that the first character in the string is str[0], not str[1].

This program makes n(n − 1)/2 = n2/2 − n/2 comparisons if you enter
a string with n characters. When measuring running time of a program,

3.6. RUNNING TIME 73

write “Enter the word:”
read word
set counter to 0
for all letters letter a in the word , do this:

for all letters letter b to the right of letter a, do this:

if letter a is equal to letter b then

set counter to counter+1

if counter > 0 then

write “There are repetitions”

else

write “No repetitions”

Figure 3.13: Algorithm to check for repeated letters in a word

word = raw_input("Enter the word: ")

counter = 0

length = len(word)

for i in range(length):

for each letter in the word...

for j in range(i+1, length):

for each letter after that one...

if word[i]==word[j]:

counter = counter + 1

if counter>0:

print "There are repeated letters"

else:

print "There are no repeated letters"

Figure 3.14: Repeated letters Python implementation

74 UNIT 3. CONTROL STRUCTURES

we won’t generally be concerned with the smaller terms because they don’t
change things too much as n gets larger (we’ll ignore n/2 in the example).

We generally aren’t concerned with the constant in front of the term (the
1

2
on the n2). So, we will say that the algorithm in Figure 3.13 has a running

time of n2.

You’d be right if you think that throwing away the 1

2
is losing

a lot of information. The difference between an algorithm that
finishes in 100 or 200 seconds is significant. The problem is that
it’s too hard to come up with a factor like this that actually means

something. The algorithm could easily run twice as fast or half
as fast if it was implemented in a different programming language,
using different commands in the language, on a different computer,
and so on.
Bottom line: is the 1

2
a big deal? Yes, but we don’t worry about it

when estimating running times.

If you are taking or have taken MACM 101, you might recognize
all of this as the same thing that’s done with big-O notation. We
would say that the repeated letters algorithm has a running time
of O(n2). If you haven’t taken MACM 101, watch for the big-O
stuff if you do.

Subset Sum

Let’s consider one final example where the best known solution is very slow.
Suppose we get a list of integers from the user, and are asked if some of

them (a subset) add up to a particular target value. This problem is known
as “subset sum”, since we are asked to find a subset that sums to the given
value.

For example, we might be asked to find a subset of 6, 14, 127, 7, 2, 8 that
add up to 16. In this case, we can. We can take the 6, 2, and 8: 6+2+8 = 14.
In this example, we should answer “yes”.

If we used the same list of numbers, but had a target of 12, there is no
subset that adds to 12. We should answer “no” in that case.

Some rough pseudocode for the subset-sum problem can be found in Fig-
ure 3.15. This algorithm will solve the problem. It simply checks every
possible subset of the original list. If one sums to the target, we can answer
“yes”; if none do, the answer is “no”.

3.6. RUNNING TIME 75

for every subset in the list:

set sum to to the sum of this subset
if sum is equal to target :

answer “yes” and quit

answer “no”

Figure 3.15: Algorithm to solve the subset-sum problem.

n 2n ≈ Approx. time
4 16 16 milliseconds
10 103 1 second
20 106 17.7 minutes
30 109 11.6 days
40 1012 31.7 years

Figure 3.16: Running time of an exponential algorithm

What is the running time of this algorithm? It depends on the number
of times the loop runs. If we have a list of n items, there are 2n subsets, so
the running time will be exponential: 2n.

More accurately, the running time is n2n, since calculating the sum
of the subset takes up to n steps.

An exponential running time is very slow. It’s so slow that exponen-
tial running times are often not even considered “real” solutions. Consider
Figure 3.16. It gives running times of a 2n algorithm, assuming an imple-
mentation and computer that can do 1000 iterations of the loop per second.

As you can see from Figure 3.16, this algorithm can only solve subset-sum
for the smallest of cases. Even if we find a computer that is much faster, we
can only increase the solvable values of n by a few values.

Can we do better than the algorithm in Figure 3.15? Maybe. There are
no known sub-exponential algorithms for this problem (or others in a large
class of equally-difficult problems), but there is also no proof that they don’t
exist.

76 UNIT 3. CONTROL STRUCTURES

Number of “Steps”

We have avoided giving the exact definition of a “step” when calculating
running times. In general, pick a statement in the innermost loop, and
count the number of times it runs.

Usually, you can multiply together the number of iterations of the nested
loops. For example, consider an algorithm like this one:

statement 1
for i from 1 to log n:

statement 2
for j from 1 to n/2:

statement 3

Here, “statement 3” is in the innermost loop, so we will count the number of
times it executes. The first for loop runs log n times, and the second runs
n/2 times. So, the running time is (log n) · (n/2). We discard the constant
factor and get a running time of n log n.

Remember that when determining running time, we will throw away
lower-order terms and leading constants. That means we don’t have to count
anything in “shallower” loops, since they will contribute lower-order terms.
Similarly, we don’t have to worry about how many statements are in the
loops; that will only create a leading constants, which will be discarded any-
way.

Summary

We have now seem algorithms that have running time log n, n, n2 and 2n.
See Figure 3.17 for a comparison of how quickly these times grow as we
increase n. In the graph, 2n has been excluded, because it grows too fast to
see without making a much larger graph.

As you can see, the log
2
n function is growing very slowly and n2 is

growing quite fast.
Coming up with algorithms with good running times for problems can

be very hard. We will see a few more examples in this course. A lot of
computing scientists spend a lot of time working on efficient algorithms for
particular problems.

For a particular algorithm, you can come up with programs that run faster
or slower because of the way they are written. It’s often possible to decrease
the number of iterations slightly or make the calculations more efficient.

3.7. DEBUGGING 77

0

20

40

60

80

100

20 40 60 80 100

steps

n

log

n2

2 n

n

Figure 3.17: Graph of the functions log
2
n, n, and n2

But no matter how fast the program is you’ve written, a better algo-
rithm will always win for large inputs. This is why most computing science
courses spend so much time focusing on algorithms instead of the details of
programming. The programming part is easy (one you learn how, anyway).
It’s coming up with correct, fast algorithms that’s hard.

Running time is fundamental when it comes to studying algo-
rithms. It is covered in CMPT 225 (Data Structures and Pro-
gramming), CMPT 307 (Data Structures and Algorithms), and
many other courses. The mathematical details of the analysis are
covered in MACM 101 (Discrete Math I).

Topic 3.7 Debugging

Unfortunately, when you write programs, they usually won’t work the first
time. They will have errors or bugs. This is perfectly normal, and you
shouldn’t get discouraged when your programs don’t work the first time.
Debugging is as much a part of programming as writing code.

78 UNIT 3. CONTROL STRUCTURES

Section 1.3 and Appendix A in How to Think Like a Computer Scientist

cover the topic of bugs and debugging very well, so we won’t repeat too much
here. You should read those before you start to write programs on your own.

Beginning programmers often make the mistake of concentrating too
much on trying to fix errors in their programs without understanding what
causes them. If you start to make random changes to your code in the hopes
of getting it to work, you’re probably going to introduce more errors and
make everything worse.

When you realize there’s a problem with your program, you should do
things in this order:

1. Figure out where the problem is.

2. Figure out what’s wrong.

3. Fix it.

Getting it right the first time

The easiest way to get through the first two steps here quickly is to write
your programs so you know what parts are working and what parts might
not be.

Write small pieces of code and test them as you go. As you write your
first few programs, it’s perfectly reasonable to test your program with every
new line or two of code.

It’s almost impossible to debug a complete program if you haven’t tested
any of it. If you get yourself into this situation, it’s often easier to remove
most of the code and add it back slowly, testing as you do. Obviously, it is
much easier to test as you write.

Don’t write your whole program without testing and then ask the
TAs to fix it. Basically, they would have to rewrite your whole
program to fix it, and they aren’t going to do that.

As you add code and test, you should temporarily insert some print

statements. These will let you test the values that are stored in variables so
you can confirm that they are holding the correct values. If not, you have a
bug somewhere in the code you’ve written and should fix it before you move
on.

In the two example “Problem Solving” topics, 2.7 and 3.5, the program
was written in small pieces to illustrate this approach.

3.7. DEBUGGING 79

Finding bugs

Unfortunately, you won’t always catch every problem in your code as you
write it, no matter how careful you are. Sooner or later, you’ll realize there
is a bug somewhere in your program that is causing problems.

Again, you should resist the urge to try to fix the problem before you know
what’s wrong. Appendix A of How to Think Like a Computer Scientist talks
about different kinds of errors and what to do about them.

When you realize you have a bug in your program, you’re going to have
to figure out where it is. When you are narrowing the source of a bug, the
print statement can be your best friend.

Usually, you’ll first notice either that a variable doesn’t contain the value
you think it should or that the flow of control isn’t the way you think it
should be because the wrong part of an if is executed.

You need to work backwards from the symptom of the bug to its cause.
For example, suppose you had an if statement like this:

if length*width < possible area:

If the condition doesn’t seem to be working properly, you need to figure out
why. You can add in some print statements to help you figure out what’s
really going on. For example,

print "l*w:", length*width

print "possible:", possible area

if length*width < possible area:

print "I’m here"

When you check this way, be sure to copy and paste the exact expressions
you’re testing. If you accidentally mistype them here, it could take a long

time to figure out what has happened.

You’ll probably find that at least one of the print statements isn’t doing
what it should. In the example, suppose the value of length*width wasn’t
what we expected. Then, we could look at both variables separately:

print "l, w:", length, width

If length was wrong, you would have to backtrack further and look at what-
ever code sets length. Remove these print statements and add in some
more around the length=. . . statement.

80 UNIT 3. CONTROL STRUCTURES

Topic 3.8 Coding Style

Writing code that is correct and solves the problem isn’t always enough. It’s
also important to write code that someone can actually read and understand.

It is often necessary for you or others to return to some code and add
features or fix problems. In fact, in commercial software, most of the expense
is in maintenance, not in the initial writing of the code.

It can be quite difficult to look at someone else’s code (or even your own
code after a few months) and figure out what’s going on. In order to fix bugs
or add features, you need to understand the logic and details of the code,
otherwise you’ll probably break more than you fix.

To help others (and yourself) understand the code you’ve written, it’s
important to try to make everything as clear as possible. There are no
absolute rules in this, but there are some guidelines you can follow.

Comments

Comments can be used in your code to describe what’s happening. In
Python, the number sign (#, also called the hash or pound sign) is used
to start a comment. Everything on a line after the # is ignored: it is there
for the programmer only, and does not affect the way the program runs.

In your programs, you should use comments to explain difficult parts
of the code. The comment should explain what is happening and/or why
it needs to be done. This can include a description of the algorithm and
purpose, if it’s not immediately clear.

Often, when beginning programmers are told “comments are good,” the
results are something like this:

add one to x

x = x + 1

Don’t do that. Anyone reading your code should understand Python, and
doesn’t need the language explained to them. Comments that actually ex-
plain how or why are much more useful:

the last entry was garbage data, so ignore it

count = count - 1

3.8. CODING STYLE 81

That comment will help somebody reading your code understand why it was
necessary to decrease count.

It is often useful to put a comment at the start of each control structure,
explaining what it does, or what the condition checks for. Here are some
examples:

if the user entered good data, add it in

if value >= 0:

total = total + value

count = count + 1

search for a value that divides num

while num%factor != 0:

factor = factor + 1

You can also put a comment at the top of a “section” of code. Look for
chunks of code that do a specific task, and put a comment at the top that
describes what that task is, and how it’s done. For example,

Get user input

Ask for integers, adding them up, until the user

enters "0".

The Code Itself

The way the code itself is written can make a huge difference in readability
and maintainability.

Probably the easiest thing to do is to use good variable names. Variable
names should describe what the variable holds and what it’s for. Consider
the first example above with poorly chosen variable names:

if x >= 0:

y = y + x

z = z + 1

It would take a lot of careful reading to figure out what this code actually
does. With descriptive variable names, it’s much easier, even without the
comment:

if value >= 0:

total = total + value

count = count + 1

82 UNIT 3. CONTROL STRUCTURES

a = int(raw_input("Enter an integer: "))

b = 0

for i in range(a+1):

if i>0:

if a % i==0:

b = b + 1

print "There are " + str(b) + " factors."

Figure 3.18: A program with poor style

There is a bit of a trade-off between the length of the variable name and
how readable it is. On one hand, short variables names like a, n1, and x aren’t
very descriptive. But, variable names that are too long can be difficult to type
and clutter code. The name total_number_of_values_entered_by_user

may be very descriptive, but code using it would be unreadable. Perhaps
values_entered would be better.

The spacing in your code is also important.
In Python, you are required to indent the blocks of code inside a con-

trol statement. In many other programming languages, this is optional, but
still considered good practice. In Python, you should be consistent in your
spacing: the standard style is to indent each block by four spaces.

Spacing within a statement can help readability as well. Consider these
two (functionally identical) statements:

y = 100 / x+1

y = 100/x + 1

The spacing in the first one suggests that the x+1 calculation is done first (as
in 100/(x+1)), but this is not the case. The order of operations in Python
dictate that the expression is equivalent to (100/x)+1. So, the second spacing
gives a more accurate first impression.

You can use space within lines, and blank lines in the code, to separate
sections logically. This will make it easier to scan the code later and pick out
the units.

Summary

Again, there are no absolute rules for coding style. It is overall a matter of
opinion, but the guidelines above can be followed to point you in the right

3.8. CODING STYLE 83

get user input and initialize

num = int(raw_input("Enter an integer: "))

count = 0

check every possible factor (1...num)

for factor in range(1, num+1):

if factor divides num, it really is a factor

if num%factor == 0:

count = count + 1

output results

print "There are " + str(count) + " factors."

Figure 3.19: Figure 3.18 with the style improved

direction.

When you are writing code, you should always keep in mind how easy it
is to read and follow the code. Add comments and restructure code where
necessary.

Consider the program in Figure 3.18. What does it do? How is it being
done? Does the text displayed to the user in the last line help?

Now look at Figure 3.19. This program does the exact same thing, but
has better style. Better variable names and a few comments make a big
difference in how easy it is to understand. Even if you don’t know what the
% operator does in the if condition, you can probably figure out what the
program does.

a%b computes the remainder of a divided by b. When it evaluates
to zero, there is no remainder: a is evenly divisible by b.

There is another change in Figure 3.19 that is worth mentioning. The
logic of the program was changed slightly to simplify it. The if in Fig-
ure 3.18 is only necessary to eliminate the case where the loop variable is
zero: checking this case causes a division by zero error. We can change the
range so the loop avoids this case in the first place.

This illustrates a final important aspect of coding style: the actual logic
of the program. The first way you think of to accomplish something might
not be the simplest. Always be on the lookout for more straightforward ways

84 UNIT 3. CONTROL STRUCTURES

to do what needs to be done. You can often eliminate some logic in your
program in favour of something that does the same thing in an easier way.

This, along with other aspects of coding style, takes experience.
You will learn new methods and tricks to get things done in a
program as you write more code, read more code, and take more
courses. Be patient and keep your eyes open for new techniques.

◮ Go back to the code you wrote for the first assignment in this course. Can
you easily understand how it works? Keep in mind that it’s only been a
few weeks: imagine coming back to it next year.

◮ Now, try to swap code with someone else in the course. Can you understand
each other’s code?

Topic 3.9 More About Algorithms

Now that you know about variables, conditionals, and loops, you have all
of the building blocks you need to start implementing algorithms. (You’ll
still need to know some more about working with data structures before you
can implement any algorithm. We will talk more about data structures in
Unit 5.)

We have also said that coming up with an algorithm is generally much
harder than implementing the algorithm with a programming language. Cre-
ating algorithms is something you’ll practice over the next few years if you
continue in computing science.

Binary Conversion

To get you started thinking about creating algorithms, we’ll do one example
here. In Topic 2.6, we talked about how to convert a binary value to decimal:
each bit is multiplied by the next power of two and the results added.

But, how can we do the opposite conversion? If I give you the number
13, how can you determine its (unsigned) binary representation? (For the
record, it’s 1101.)

First, let’s assume we’re limited to 8-bit binary numbers. The 8-bit rep-
resentation of the number 13 is shown in Figure 3.20, with the numeric value

3.9. MORE ABOUT ALGORITHMS 85

6412
8 32 16 8 4 2 1

1 1 10 0 0 00

Figure 3.20: The number 13 represented with 8 bits

of each bit. We can check to see that this is the correct representation:
8 + 4 + 1 = 13.

Now, back to the question of how we could come up with this. Let’s try
to get the eight-bit representation for the number 25.

First an easy question: do we need a 0 or 1 in the first position (the 128’s
position)? Obviously not, 128 is much bigger than 25, so adding in a 128
will make the whole thing too big. In fact, we can fill in the highest three
bits this way. They are all larger than 25, so we’ll definitely want 0’s there:

000?????

Well, at least we’re getting somewhere: we have the first few bits taken
care of. Now, do we want a 0 or 1 in the next position (16)? According to
the above reasoning, we could put a 1, but is that necessarily right? Suppose
we don’t: put a 0 in the 16’s position. Then all of the bits we have left to
fill are 8, 4, 2, and 1. These add up to 15, so there’s no way we could get 25
out of that. We have to put a 1 in the 16’s position:

0001????

For the rest of the positions, we can continue in a similar way. We have
taken care of 16 of the number 25 we’re trying to represent, so we have 9
left. Keep going down the line: for the 8’s position, 8 is less than 9, so put
a 1 in that position:

00011???

We now have 1 left to represent. We can’t take a 4 or a 2, but will set
the last bit to 1:

00011001

This has described a fairly simple algorithm to determine the binary
representation of a number: if the bit we’re looking at will fit in the number
we have left, put a 1; if not, put a 0. Pseudocode for this algorithm is in
Figure 3.21.

86 UNIT 3. CONTROL STRUCTURES

read num
for positions p from 7, 6, . . . 0, do this:

if num < 2p , then

set binary to binary + “0”

otherwise,

set binary to binary + “1”
set num to num − 2p

write binary

Figure 3.21: Pseudocode to determine the 8-bit binary representation

This algorithm only works for numbers up to 255. If you give the algo-
rithm a number any bigger than that, it will produce all 1’s. It’s possible to
fix the algorithm by starting with bit ⌊log

2
n⌋, instead of bit 7.

So?

You should probably know how to convert a number to its binary represen-
tation, but that’s not the point of this topic.

As you go on into computing science, development of algorithms is impor-
tant. The point here is to give you an idea of how you can go about coming
up with an algorithm. Start by trying to work out the problem by hand and
try to recognize the common steps and decisions needed. Try to work this
into pseudocode expressing a general method and test it on different values.

Once you have the pseudocode, you can then start working on a program
that implements the algorithm you’ve developed.

Summary

At this point, we have seen all of the major building blocks of computer
programs. Once you have loops and conditionals, you can combine them to
tackle just about any problem.

Again with this material, you have to practice these ideas by writing
programs before you’ll really understand them.

3.9. MORE ABOUT ALGORITHMS 87

Key Terms

• if statement

• condition

• boolean expression

• for loop

• while loop

• running time

• debugging

88 UNIT 3. CONTROL STRUCTURES

Unit 4

Functions and Decomposition

Learning Outcomes

• Design and implement functions to carry out a particular task.

• Begin to evaluate when it is necessary to split some work into functions.

• Locate the parts of a program where particular variables are available.

• Import Python modules and use their contents.

• Read the Python module reference for information on a module’s con-
tents.

• Use objects provided by modules in your programs.

• Catch errors in programs and handle them gracefully.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Sections 3.6–3.12, 4.8, 5.1–5.4, 5.6 in How to Think Like a Com-

puter Scientist.

Topic 4.1 Defining Functions

We have already seen how several functions work in Python. In particular,
we have used raw_input, range, int, and str. Each of these is built into
Python and can be used in any Python program

89

90 UNIT 4. FUNCTIONS AND DECOMPOSITION

def read_integer(prompt):

"""Read an integer from the user and return it."""

input = raw_input(prompt)

return int(input)

num = read_integer("Type a number: ")

print "One more is", num+1

num = read_integer("Type another: ")

print "One less is", num-1

Figure 4.1: A program with a function defined

A function must be given arguments . These are the values in parentheses
that come after the name of the function. For example, in int("321"), the
string "321" is the argument. Functions can have no arguments, or they can
take several.

Functions that return values can be used as part of an expression. We
saw how the int function works, which returns an integer. It can be used in
an expression like this:

x = 3*int("10") + 2

After this statement, the variable x will contain the number 32. In this
expression the int function returns the integer 10, which is then used in the
calculation.

Python functions can return any type of value including strings and float-
ing point values.

Defining your own functions

You can define your own functions as well. They are defined with a def

block, as shown in Figure 4.1. The code inside the def isn’t executed right
away. The function is defined and then run whenever it is called.

In Figure 4.1, the function is named “read_integer” and takes one ar-
gument that we’ll call prompt. Inside the function definition, prompt works
like a variable. Its value is filled in with whatever argument is given when
the function is called.

4.1. DEFINING FUNCTIONS 91

The next line is a triple-quoted string that describes the function. This
is called a documentation string or docstring. The docstring is a special form
of a comment in Python: it has no effect on the behaviour of the function. It
works like a comment and will help somebody reading your code figure out
what it does.

Every function you write in this course must have a meaningful
docstring. It will help us understand your code more easily when
we mark it. It is also a good habit to get into. When you have to
come back to some of your own code after a few weeks, you’ll be
glad you included it.

The statements in the body of the function are what will be executed
when the function is called. The return statement indicates the value that
the function returns.

The main part of the program in Figure 4.1 makes two calls to the
read_integer function. Here’s what the program looks like when it’s run:

Type a number: 15

One more is 16

Type another: 192

One less is 191

You should define functions to do tasks that you’ll have to do several
times. That way you’ll only have to type and debug the code once and be
able to use it many times. As a general rule, you should never copy-and-paste
code. If you need to reuse code, put it in a function and call it as many times
as necessary.

Defining functions is also useful when you are creating larger program.
Even if you’re only going to call a function once, it helps you break your
program into smaller pieces. Writing and debugging many smaller pieces of
code is much easier than working on one large one.

Calling Functions

Consider the example function in Figure 4.2. This does a calculation that
is common in many algorithms. The docstring should be enough for you to
figure out what it does.

Suppose we then run this statement:

half_mid = middle_value(4,2,6) / 2

92 UNIT 4. FUNCTIONS AND DECOMPOSITION

def middle_value(a, b, c):

"""

Return the median of the three arguments. That is,

return the value that would be second if they were

sorted.

"""

if a <= b <= c or a >= b >= c:

return b

elif b <= a <= c or b >= a >= c:

return a

else:

return c

Figure 4.2: A sample function

What exactly happens when the computer “runs” this code?

1. The expression on the right of the variable assignment must be eval-
uated before the variable can be assigned, so that is done first. It
evaluates the expression middle_value(4,2,6) / 2.

2. The sub-expressions on either sode of the division operator must be
evaluated. The first is a call to our function. It then evaluates the
expression middle_value(4,2,6).

3. This requires calling the function in Figure 4.2. Now, this statement is
put on hold while the function does its thing.

4. The function middle_value is called.

(a) The arguments that are given in the calling code (4,2,6) are as-
signed to the local variables given in the argument list (a,b,c).
So, the behaviour is as if we had code in the function that made
these assignments: a=4, b=2, c=6.

(b) The code in the function body then starts to execute. This code
executes until it gets to the end of the function or a return state-
ment. It this case, the if condition is false, so the return b

statement is skipped. The condition of the elif is true (since b

<= a <= c), so the return a statement executes.

4.1. DEFINING FUNCTIONS 93

(c) The function returns the integer 4 and exits. Any code after the
return doesn’t execute, since the function has already stopped.

5. The calling code gets the return value, 4. This is used in place of the
function call. The expressions is now 4/2.

6. The division is done. The original expression has evaluated to the
integer 2.

7. The integer 2 is assigned to the variable half_mid.

This outline of a function call is reasonably representative of any function
call. When the call occurs, that code pauses until the function is finished
and returns a value.

Functions that don’t return values are similar. The only difference is that
they are not part of a larger expression. They just execute and the calling
code continues when they are done.

Why Use Functions?

Functions can be used to break your program into logical sections. You can
take a specific task or calculation, and define a function that accomplishes
that task or calculation. Breaking the logic of a program up into sections
can make it much easier to build. You can create functions to handle parts
of your algorithm, and assemble them in a much simpler main program.

Using functions well can make your program much easier to read. Func-
tions should have descriptive names, like variables. The function should be
named after what it does or what it returns. For example, read_data_file,
initial_guess, or run_menu.

The function definitions themselves can be relatively small (and under-
standable) stretches of code. Someone trying to read the program can figure
out one function at a time (aided by a good function name and the doc-
string). Then, they can move on to the main program that assembles these
parts. This is generally much easier than reading (and writing and debug-
ging) one long section of code in the main program.

Functions are also quite useful to prevent duplication of similar code. If
you need to do similar tasks in different parts of the program, you could copy-
and-paste code, and many beginning programmers do. But, what happens
when you want to change or update that task? You have to hunt for that

94 UNIT 4. FUNCTIONS AND DECOMPOSITION

code everywhere it occurs and fix it in every location. This is tedious and
error-prone.

If the repeated task is separated into a function, then maintaining it is
much easier. It only occurs in one place, so it’s easy to fix. You should never

copy-and-paste code within a program—it creates a maintainance nightmare.
Functions are one tool that can be used to unify tasks.

Check-Up Questions

◮ Write a function square that takes one floating point value as its argu-
ment. It should return the square of its argument.

◮ Have a look at programs you’ve written for this course. Are there places
where some work has been duplicated and could be put into a function?

Topic 4.2 Variable Scope

In Figure 4.1, the argument prompt is only available in the read_integer

function. If we tried to use prompt outside of the function, Python would
give the error

NameError: name ’prompt’ is not defined

It does so because prompt is a local variable in the read_integer func-
tion. You could also say that the variable’s scope with the read_integer

function. Any variables that are created within a function are local to that
function. That means that they can’t be used outside of the function.

This is actually a very good thing. It means that when you write a
function, you can use a variable like num without worrying that some other
part of the program is already using it. The function gets an entirely separate
thing named num, and anything named num in the rest of the program is
undisturbed.

Have a look at the program in Figure 4.3. When it’s run, it produces
output like this:

How many lines should I print? 4

*

**

4.2. VARIABLE SCOPE 95

def stars(num):

"""

Return a string containing num stars.

This could also be done with "*" * num, but that

doesn’t demonstrate local variables.

>>> print stars(5)

>>> print stars(15)

"""

starline = ""

for i in range(num):

starline = starline + "*"

return starline

num = int(raw_input("How many lines should I print? "))

for i in range(num):

print stars(i+1)

Figure 4.3: A program that takes advantage of local variables

96 UNIT 4. FUNCTIONS AND DECOMPOSITION

There is no confusion between the variable num in the function and the
one in the main program. When the function uses the variable num, it is
totally unrelated to the one in the main program. The same thing happens
with i. It is used as the loop variable for both for loops. Since the function
has its own version of i, there’s no conflict and both loops do what they look
like they should

So, to use the function stars, you don’t have to worry about how it was
implemented—what variables names were used and for what. All you have
to know it what it does.

If a programming language doesn’t have this property that variables are
usually local to a particular function or other part of the program, it becomes
very hard to write large programs. Imagine trying to write some code and
having to check 20 different functions every time you introduce a new variable
to make sure you’re not using the same name over again.

Also notice that the docstring in Figure 4.3 is much longer. It includes
two examples of what the function should do. Giving examples is a good
idea because it gives you something to check when you test the function.
The actual behaviour should match what you’ve advertised in the docstring.

There is actually a Python module called doctest that looks
through your docstrings for things that look like examples of the
function’s use. It then checks them to make sure the examples
match what actually happens.

Why Use Functions?

Local variables introduce another reason to use functions. Since variables
in functions are separate from the variables elsewhere in the program, the
code has very limited interaction with the rest of the program. This makes
it much easier to debug programs that are separated with functions.

Functions take in values as arguments, and can return a value when they
are done. They have no other way to interact with variables in other func-
tions.

That means that they can be debugged separately: if a function does
its job given the correct arguments, then it works. If there is a problem in
other parts fo the program, we don’t have to worry about other functions
changing variable values because they can’t. Each function can be checked
for correctness on its own.

4.3. PYTHON MODULES 97

import time

print "Today is " + time.strftime("%B %d, %Y") + "."

Figure 4.4: Program that prints today’s date.

Since it’s much easier to work with many small chunks of code than one
large one, the whole writing and debugging process becomes much easier. As
a programmer, you have to create and test individual functions. Once you’re
reasonably sure the function is corret, you can forget about it and move on
to other tasks.

Topic 4.3 Python Modules

In most programming languages, you aren’t expected to do everything from
scratch. Some prepackaged functions come with the language, and you can
use them whenever you need to. These are generally called libraries. In
Python, each part of the whole built-in library is called a module.

There are a lot of modules that come with Python—it’s one of the things
that experienced programmers tend to like about Python.

For example, the module time provides functions that help you work
with times and dates. The full documentation for the time module can
be found online. It’s important that a programmer can find and interpret
documentation like this. It might seem daunting at first—the documentation
is written for people who know how to program—it should get easier with
practice.

In the documentation, you’ll find that the time module has a function
strftime that can be used to output the current date and time in a particular
format. The program in Figure 4.4 uses the time module to output the
current date.

When the program runs, it produces output like this:

Today is December 25, 2010.

The first line in Figure 4.4 imports the time module. Modules in Python
must be imported before they can be used. There are so many modules that
if they were all imported automatically, programs would take a long time to

98 UNIT 4. FUNCTIONS AND DECOMPOSITION

start up. This way, you can just import the modules you need at the start
of the program.

In the next line, the function strftime is referred to as time.strftime.
When modules are imported like this, you get to their contents by calling
them modulename.function . This is done in case several modules have
functions or variables with the same names.

You can also import modules so that you don’t have to do this: You could
just call the function as strftime. To do that, the module’s contents are
imported like this:

from time import *

This is handy if you want to use the contents of a particular module a lot.
How did we know that "%B %d, %Y" would make it output the date in

this format? We read the documentation online. The %B gets replaced with
the full name of the current month, %d with the day of the month, and %Y

with the four-digit year.
There are Python modules to do all kinds of things, far too many to

mention here. There is a reference to the Python libraries linked from the
course web site.

We will mention a few more modules as we cover other topics in the
course. You can always go to the reference and get a full list and description
of their contents.

Check-Up Questions

◮ Have a look at the module reference for time and see what else is there.

◮ Look at the other modules available in Python. You probably won’t under-
stand what many of them do, but have a look anyway for stuff that you
do recognize.

Topic 4.4 Objects

As you start writing programs, you will often have to represent data that is
more complicated that a “number” or “string”. There are some other types
that are built into Python. There are also more complicated types that can
hold collections of other information. These are called objects.

4.4. OBJECTS 99

Most modern programming languages have the concept of objects. You
can think of an “object” in a programming language like a real-world object
like a DVD player.

A DVD player has some buttons you can press that will make it do
various things (play this DVD, go to menu, display information on-screen)
and it displays various information for you (playing, stopped, current time).
Each of the buttons correspond to various actions the player can take. Each
item that is displayed reflects some information about the current state of
the player.

Objects in a programming language are similar. Objects are collections
of properties and methods.

A property works like a variable. It holds some information about the
object. In the DVD player example, the current position in the movie might
be a property. Part way through the movie, the position might be 1:10:41.
You could use the remote to change this property to 1:00:00 if you want to
re-watch the last ten minutes. In Python, you can set the value of a property
directly, just like a variable.

A method works like a function. It performs some operation on the object.
For the DVD player, a method might be something like “play this DVD”. A
method might change some of the method’s properties (like set the counter
to 0:00:00) and perform some other actions (start the disc spinning, put the
video on the screen).

A particular kind of object is called a class. So in the example, there is
a class called “DVD Player”. When you create an object in the class, it’s
called an instance. So, your DVD player is an instance of the class “DVD
Player”.

An instance behaves a lot like any other variable, except it contains meth-
ods and properties. So, objects are really variables that contain variables and
functions of their own.

Objects in Python

Classes in Python can be created by the programmer or can come from
modules. We won’t be creating our own classes in this course, just using
classes provided by modules.

To instantiate an object, its constructor is used. This is a function
that builds the object and returns it. For example, in Python, the module
datetime provides a different set of date and time manipulation functions

100 UNIT 4. FUNCTIONS AND DECOMPOSITION

import datetime

newyr = datetime.date(2005, 01, 01)

print newyr.year # the year property

print newyr.strftime("%B %d, %Y") # the strftime method

print newyr

Figure 4.5: Date manipulation with the datetime module’s objects

than the time module we saw in Topic 4.3. The datetime module provides
everything in classes which contain all of the functions that can work on
particular kinds of date information.

The datetime module provides the class called “date” which can hold
information about a day. Figure 4.5 shows an example of its use.

After the datetime module is imported, a date object is created. The
constructor for a date object is datetime.date()—this function from the
datetime module returns a date object. This object is stored in the newyr

variable.
Now that we have an object to work with, we can start poking around at

its properties (variables inside the object) and methods (functions inside the
object).

In the first print statement, you can see that a date object has a property
called year. You get to a property in an object the same way you get to a
function inside a module: use the name of the object, a dot, and the name of
the property. The year behaves like a variable, except it’s living inside the
date object named newyr.

The second print statement shows the use of a method. Date objects
contain a method called strftime that works a lot like the function from
the time module. The strftime method takes whatever date is stored in its
date object and formats that the way you ask it to.

Finally, we see that a date object knows how to convert itself to a string
if we just ask that it be printed. By default, it just uses a year-month-day
format.

So, the program in Figure 4.5 produces this output:

2005

January 01, 2005

2005-01-01

4.4. OBJECTS 101

The ways you can use an object depend on how the class has been defined.
For example, some classes know how they can be “added” together with the
+ sign, but date doesn’t:

>>> import datetime

>>> first = datetime.date(1989, 12, 17)

>>> print first

1989-12-17

>>> print first+7

TypeError: unsupported operand type(s) for +:

’datetime.date’ and ’int’

So, Python doesn’t know how to add the integer 7 to a date. But, it does
know how to subtract dates:

>>> import datetime

>>> first = datetime.date(1989, 12, 17)

>>> second = datetime.date(1990, 1, 14)

>>> print second-first

28 days, 0:00:00

>>> type(second-first)

<type ’datetime.timedelta’>

So, something in the definition of the date class says that if you subtract two
dates, you get a timedelta object. The timedelta class is also defined by
the datetime module and its job is to hold on to lengths of time (the time
between event A and event B).

This is where the power of objects begins to show itself: a programmer
can create objects that represent any kind of information and “know” how
to do many useful operations for that type of information. Particularly when
writing larger programs, classes and objects become very useful when it comes
to organizing the information your program needs to work with.

Object oriented programming is important in modern program-
ming. It will be introduced in more detail in CMPT 125 and 225.

Check-Up Question

◮ Have a look at the module reference for datetime. What can you do with
a timedelta object? What other classes are provided?

102 UNIT 4. FUNCTIONS AND DECOMPOSITION

m_str = raw_input("Enter your height (in metres): ")

try:

metres = float(m_str)

feet = 39.37 * metres / 12

print "You are " + str(feet) + " feet tall."

except:

print "That wasn’t a number."

Figure 4.6: Catching an exception

Topic 4.5 Handling Errors

So far, whenever we did something like ask for user input, we have assumed
that it will work correctly. Consider the program in Figure 2.7, where we
got the user to type their height and converted it to feet. If the user enters
something that can’t be converted to a float, the results are not very pretty:

Enter your height (in metres): tall

Traceback (most recent call last):

File "inches0.py", line 1, in ?

metres = float(raw_input(\

ValueError: invalid literal for float(): tall

This isn’t very helpful for the user. It would be much better if we could give
them another chance to answer or at least a useful error message.

Python lets you catch any kind of error, as Figure 4.6 shows. Here are
two sample runs of that program:

Enter your height (in metres): tall

That wasn’t a number.

Enter your height (in metres): 1.8

You are 5.9055 feet tall.

Errors that happen while the program is running are called exceptions.
The try/except block lets the program handle exceptions when they happen.
If any exceptions happen while the try part is running, the except code is
executed. It is ignored otherwise.

4.5. HANDLING ERRORS 103

got_height = False

while not got_height:

m_str = raw_input("Enter your height (in metres): ")

try:

metres = float(m_str)

got_height = True # if we’re here, it was converted.

except:

print "Please enter a number."

feet = 39.37 * metres / 12

print "You are " + str(feet) + " feet tall."

Figure 4.7: Asking until we get correct input

Figure 4.7 shows another example. In this program, the while loop will
continue until there is no exception. The variable got height is used to keep
track of whether or not we have the input we need.

Check-Up Question

◮ Take a program you have written previously in this course that takes nu-
meric input and modify it so it gives a nice error message.

Summary

This unit covers a lot of bits and pieces that don’t necessarily let your pro-
grams do any more, but help you write programs that are better organized
and are thus easier to maintain.

The modules in Python are very useful. In this course, we will try to point
out relevant modules when you need them; we don’t expect you to comb
through the entire list of built-in modules every time you need something.

Key Terms

• functions • arguments

104 UNIT 4. FUNCTIONS AND DECOMPOSITION

• return value

• docstring

• variable scope

• module

• import

• object

• class

• property

• method

• exception

Part II

Problem Solving

105

Unit 5

Data Structures

Learning Outcomes

• Manipulate string data.

• Use lists for storing and manipulating data.

• Describe the difference between mutable and immutable data struc-
tures.

• Identify mutable and immutable data structures, and describe the dif-
ference between them.

• Describe the use of references in assignment and argument passing.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Chapters 7 and 8 in How to Think Like a Computer Scientist.

Topic 5.1 Lists

So far, all of the variables that we have used have held a single item: one
integer, floating point value, or string. These types are good at storing the
information they are designed for, but you will often find that you want to
store a collection of values in your programs.

107

108 UNIT 5. DATA STRUCTURES

For example, you may want to store a list of values that have been entered
by the user or a collection of values that are needed to draw a graph.

In Python, lists can be used to store a collection of other values. Lists in
Python can hold values of any type; they are written as a comma-separated
list enclosed in square brackets:

numlist = [23, 10, -100, 2]

words = [’zero’, ’one’, ’two’]

junk = [0, 1, ’two’, [1,1,1], 4.0]

Here, numlist is a list holding four integers; words holds three strings; and
junk has five values of different types (one of them is itself a list).

Lists are like strings

To get a particular value out of a list, it can be subscripted. This is done just
like subscripting a string to extract a single character:

>>> testlist = [0, 10, 20, 30, 40, 50]

>>> print testlist[2]

20

>>> print testlist[0]

0

>>> print testlist[10]

IndexError: list index out of range

Like strings, the first element in a list is element 0.

You can determine the length of a list with the len function:

>>> print len(testlist)

6

So, we can walk through each element of a list the same way we iterated
over the characters in a string:

>>> for i in range(len(testlist)):

... print testlist[i],

...

0 10 20 30 40 50

Lists can be joined (concatenated) with the + operator:

5.1. LISTS 109

>>> testlist + [60, 70, 80]

[0, 10, 20, 30, 40, 50, 60, 70, 80]

>>> [’one’, ’two’, ’three’] + [1, 2, 3]

[’one’, ’two’, ’three’, 1, 2, 3]

Lists can also be returned by functions:

>>> s = ’abc-def-ghi’

>>> s.split(’-’)

[’abc’, ’def’, ’ghi’]

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In all of the above examples, lists are similar to strings. As far as we’ve
seen so far, you could just think of strings as just lists of characters. Lists
(so far) work just like strings, except you can put anything in each element,
not just a character.

If you ever program in C, you’ll find that there really isn’t any
“string” type in C. Strings are just implemented as lists (called
arrays in C) of characters. In Python, strings get a separate data
type.

Lists are different from strings

Of course, the biggest difference between lists and strings is what they can
hold. A string holds only characters, but a list can hold any type of Python
data.

More than that, there are many operations that you can do on lists that
aren’t possible on string. It’s not possible to change individual parts of a
string without totally rebuilding it. When you want to change a string, you
need to write an expression that created a new string, and over-wrote the
old variable.

With a list, you can assign a new value to a part of the list, without
having to rebuild the entire list. This is called element assignment .

>>> colours = [’red’, ’yellow’, ’blue’]

>>> print colours

[’red’, ’yellow’, ’blue’]

>>> colours[1] = ’green’

>>> print colours

[’red’, ’green’, ’blue’]

110 UNIT 5. DATA STRUCTURES

The third statement here changes a single element of the lists, without having
the change the entire list (by doing a colours=... assignment).

It is also possible to delete an element from a list, using the del statement.

>>> colours = [’red’, ’yellow’, ’blue’]

>>> del colours[1]

>>> print colours

[’red’, ’blue’]

>>> del colours[1]

>>> print colours

[’red’]

You can also add a new element to the end of a list with the append

method.

>>> colours = [’red’, ’yellow’, ’blue’]

>>> colours.append(’orange’)

>>> colours.append(’green’)

>>> print colours

[’red’, ’yellow’, ’blue’, ’orange’, ’green’]

In order to do something similar with a string, a new string must be built
with the + operator:

>>> letters = ’abc’

>>> letters = letters + ’d’

>>> letters = letters + ’e’

>>> print letters

abcde

You can do the same thing with lists (rebuild them with + or other operators),
but it’s slower. As another example, see Figure 5.1

All of these operations can change part of a list. Changing one element
(or a few elements) is more efficient than creating an entirely new list. These
operations can make working with lists quite efficient.

If you try change part of a string, you will get an error. We will discuss
this difference further in Topic 5.5.

There are many other list operations as well: lists are a very flexible data
structure. See the online Python reference for more details.

5.2. LISTS AND FOR LOOPS 111

print "Enter some numbers, 0 to stop:"

numbers = []

x=1

while x!=0:

x = int(raw_input())

if x!=0:

numbers.append(x)

print "The numbers you entered are:"

print numbers

Figure 5.1: Building a list with the append method

Topic 5.2 Lists and for loops

In an earlier example, you might have noticed how the range function was
used to create a list:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

But all along, we have been using the range function with the for loop:

for i in range(10):

do something with i

...

So, what’s the relationship?

It turns out that the for loop in Python can iterate over any list, not just
those produced by the range function. The range function is a convenient
way to produce a list of integers, but not the only way. We have seen other
ways to build a list, and those can be used with the for loop as well.

Have a look at the code in Figure 5.2. There, the for loop iterates over
each element in the list words. The for loop does the same thing it does
with a range: it runs the loop body once for each element. The output of
Figure 5.2 is:

112 UNIT 5. DATA STRUCTURES

words = ["up", "down", "green", "cabbage"]

for word in words:

print "Here’s a word: " + word

Figure 5.2: Iterating over a list

Here’s a word: up

Here’s a word: down

Here’s a word: green

Here’s a word: cabbage

Iterating through the elements of a list can be quite convenient. It’s
common to have to do the same operation on each element of a list, and this
gives an easy way to do it.

It also makes code very readable. You can interpret the loop in Figure 5.2
as “for every word in the list words, do this. . . .” So, the meaning of the code
is very close to the way you’d read it. This is always a benefit when trying
to read and maintain code.

Topic 5.3 Slicing and Dicing

Hopefully you are comfortable with indexing by now. You can access a single
element from a string or list with indexing:

>>> colours = [’red’, ’yellow’, ’blue’]

>>> colours[1] = ’green’ # set an element with indexing

>>> print colours[2] # index to retrieve an element

’blue’

It’s also possible to access several elements of a list by slicing. Slicing
looks like indexing, but you can specify an entire range of elements:

>>> colours = [’red’, ’yellow’, ’green’, ’blue’]

>>> print colours[1:3]

[’yellow’, ’green’]

As you can see, the slice [1:3] refers to elements 1–2 from the list. In
general, the slice [a:b] extracts elements a to b-1.

5.3. SLICING AND DICING 113

You might be thinking that the slice operator should extract all of the
elements from a to b (including b), but it stops one before that. Maybe
it’s not intuitive, but it does match the behaviour of the range function:
range(a,b) gives you all of the integers from a to b-1, and the slice [a:b]

gives you the elements from a to b-1.

Special Slice Positions

In addition to selecting “elements a to b-1,” there are special values that
can be used in a slice.

Negative values count from the end of a list. So, -1 refers to the last

item in the list, -2 to the second-last, and so on. You can use this to (for
example) extract everything except the last element :

>>> colours = [’red’, ’yellow’, ’green’, ’blue’]

>>> print colours[0:-1]

[’red’, ’yellow’, ’green’]

If you leave out one of the values in the slice, it will default to the start or
end of the list. For example, the slice [:num] refers to elements 0 to num-1.
The slice [2:] gives elements from 2 to the end of the list. Here are some
more examples:

>>> colours = [’red’, ’yellow’, ’green’, ’blue’, ’orange’]

>>> print colours[2:]

[’green’, ’blue’, ’orange’]

>>> print colours[:3]

[’red’, ’yellow’, ’green’]

>>> print colours[:-1]

[’red’, ’yellow’, ’green’, ’blue’]

The slice [:-1] will always give you everything except the last element;
[1:] will give everything but the first element. These cases in particu-
lar come up fairly often when programming. It’s common to use the first
element of a list (work with thelist[0]) and then continue with the tail
(thelist[1:]). Similarly, you can work with the last element((thelist[-1]),
and then use the head of the list (thelist[:-1]).

114 UNIT 5. DATA STRUCTURES

Manipulating Slices

You can actually do almost anything with list slices that you can do with
simple indexing. For example, you can assign to a slice:

>>> colours = [’red’, ’yellow’, ’green’, ’blue’]

>>> colours[1:3] = [’yellowish’, ’greenish’]

>>> print colours

[’red’, ’yellowish’, ’greenish’, ’blue’]

>>> colours[1:3] = [’pink’, ’purple’, ’ecru’]

>>> print colours

[’red’, ’pink’, ’purple’, ’ecru’, ’blue’]

Notice that in the second assignment above, we assigned a list of three el-
ements to a slice of length two. The list expands to make room or the
new elements: the slice colours[1:3] ([’yellowish’, ’greenish’]) is re-
placed with the list [’pink’, ’purple’, ’ecru’]. If the list assigned had
been shorter than the slice, the list would have shrunk.

You can also remove any slice from a list:

>>> colours = [’red’, ’yellow’, ’green’, ’blue’]

>>> del colours[1:3]

>>> print colours

[’red’, ’blue’]

Slices give you another way to manipulate lists. With both slices and the
operators and methods mentioned in Topic 5.1, you can do many things with
lists.

Topic 5.4 Strings

Much of what we have seen in the previous sections about lists also applies
to strings. Both are considered sequence types in Python. Strings are a
sequence of characters; lists are a sequence of any combination of types.

In Topic 5.2, we saw that the for loop can iterate through any list.
Lists aren’t the only type that can be used in the for loop. Any type that
represents a collection of values can be used as the “list” in a for loop.

Since a string represents a sequence of characters, it can be used. For
example, this program iterates through the characters in a string:

5.5. MUTABILITY 115

for char in "abc":

print "A character:", char

When this is executed, it produces this output:

A character: a

A character: b

A character: c

List looping over a list, this can make your code very readable, and is often
a very useful way to process a string.

Slicing Strings

In Topic 5.3, we used slices to manipulate parts of lists. You can slice strings
using the same syntax as lists:

>>> sentence = "Look, I’m a string!"

>>> print sentence[:5]

Look

>>> print sentence[6:11]

I’m a

>>> print sentence[-7:]

string!

But, you can’t modify a string slice, just like you can’t assign to a single
character of a string.

>>> sentence = "Look, I’m a string!"

>>> sentence[:5] = "Wow"

TypeError: object doesn’t support slice assignment

>>> del sentence[6:10]

TypeError: object doesn’t support slice assignment

Just like lists, you can use the slice [:-1] to indicate “everything but the
last character” and [1:] for “everything but the first character”.

Topic 5.5 Mutability

You may be wondering why assigning to a slice (or single element) works for
a list, but not a string. For example:

116 UNIT 5. DATA STRUCTURES

dots = dots + "." # statement #1

values = values + [n] # statement #2

values.append(n) # statement #3

Figure 5.3: Manipulating strings and lists

>>> colours = [’red’, ’yellow’, ’green’, ’blue’]

>>> colours[1:3] = [’yellowish’, ’greenish’]

>>> print colours

[’red’, ’yellowish’, ’greenish’, ’blue’]

>>> sentence = "Look, I’m a string!"

>>> sentence[:5] = "Wow"

TypeError: object doesn’t support slice assignment

Why is it possible to do more with lists than strings?
In fact, lists are the only data structure we have seen that can be changed

in-place. There are several ways to modify an existing list without totally
replacing it: assigning to a slice, using del to remove an element or slice,
extending with the append method, and so on. Notice that none of these
require creating a new list.

On the other hand, any string manipulation requires you to build a new
string which can then be stored in a variable. Consider the statements in
Figure 5.3. Statement #1 first builds a new string object (by evaluating the
right side of the assignment, dots + "."), and then stores that new string
in dots. The old value in dots is discarded because it’s no longer in use.

In statement #2, the same thing happens with a list. A new list is built
(by evaluating values + [n]), and the variable values is set to refer to
it instead of its old value. The old value is discarded since it’s no longer
used. Each of these statements requires a lot of work if the initial string/list
is large: it must be copied, along with the new item, and the old data is
dropped from memory.

Statement #3 has the same effect as #2, but it happens in a very different
way. In this case, the append method uses the existing list, and just adds
another element to the end. This requires much less work, since the list
doesn’t have to be copied as part of evaluating an expression.

At the end of statement #2 or #3, the values variable holds the same
list. In the case of #3, the list has been modified but not entirely rebuilt.
This should be clear since it is not an assignment statement (i.e. a var=

5.6. REFERENCES 117

statement). Any statement that assigns to a variable must be building a new
value in the expression on the right of the =. If there is no assignment, the
variable is still holding the same object, but the object may have changed.

Data structures that can be changed in-place like this are called mutable.
Lists are the only mutable data structure we have seen in detail. The strings
and numbers are not mutable: they are immutable.

Objects in Python are mutable if they contain methods that can change
them without a new assignment. The date objects that were used in Topic 4.4
are immutable since there are no methods that can modify an existing date

object. There are other object types in Python modules that have methods
that modify them in-place: these are mutable objects.

In Python 2.4, two set types were added that can be created with
the set() and frozenset() functions. These hold values like lists,
but they aren’t in any order. They are just a collection of values.
The only difference between a set and frozenset is that sets are
mutable (contain methods like add to insert a new element), and
frozen sets are immutable (those methods aren’t included). There
are instances where either is useful, so they are both available.

Topic 5.6 References

There are several cases where the contents of one variable are copied to
another. In particular, here are two operations that require duplicating the
variable x:

x copied to a parameter variable in some_function:

print some_function(x)

x copied into y:

y = x

You probably don’t think of copying the contents of a variable as a difficult
operation, but consider the case where x is a list with thousands of elements.
Then, making an full copy of x would be a lot of work for the computer, and
probably unnecessary since all of its contents are already in memory.

In fact, Python avoids making copies where possible. To understand how
this happens, it’s important to understand references.

118 UNIT 5. DATA STRUCTURES

my_string = "one" + "two" + "three"
my_list = [0, 10, 20]

Statements:

Result:

my_string

"onetwothree"

my_list [0, 10, 20]

Figure 5.4: Variables referencing their contents

Every variable in Python is actually a reference to the place in memory
where its contents are stored. Conceptually, you should think of a variable
referencing its contents like an arrow pointing to the contents in memory.
In Figure 5.4, you can see a representation of two variables referencing their
contents.

When you use a variable in an expression, Python follows the reference
to find its contents. When you assign to a variable, you are changing it so
the variable now references different contents. (The old contents are thrown
away since they are no longer being referenced.)

Usually, the expression on the right side of an assignment creates a new
object in memory. The calculation is performed, and the result is stored in
memory. The variable is then set to refer to this result. For example, total
= a+b calculates a+b, stores this in memory, and sets total to reference that
value.

The exception to this is when the right side of an assignment is simply a
variable reference (like total=a). In this case, the result is already in memory
and the variable can just reference the existing contents. For example, in
Figure 5.5, my_list is created and refers to a list. When my_list is assigned
to list_copy, the reference is copied, so the list is only stored once. This
saves memory, and is faster since the contents don’t have to be copied to
another location in memory.

5.6. REFERENCES 119

my_list

list_copy

[0, 10, 20]

my_list = [0, 10, 20]
list_copy = my_list

Statements:

Result:

Figure 5.5: Reference copied during assignment: aliasing

my_list

list_copy

[0, 10, 20, 30, 40]

my_list = [0, 10, 20]
list_copy = my_list

Statements:

list_copy.append(30)
my_list.append(40)

Result:

Figure 5.6: Changing either alias changes both

Aliases

When two variables refer to the same contents, they are aliases of each other.
This has always happened when we assigned one variable to another, and
it’s generally good since it doesn’t require copying the contents to another
location in memory.

But, now that we have mutable data structures (lists and some objects),
aliases complicate things. Since mutable data structures can be changed
without totally rebuilding them, we can change the contents without moving
the reference to a new object in memory.

That means that it’s possible to change a variable, and the changes will

120 UNIT 5. DATA STRUCTURES

"onetwothreefour"

my_string = "one" + "two" + "three"

Statements:

string_copy = my_string
string_copy = string_copy + "four"

Result:
"onetwothree"

my_string

string_copy

Figure 5.7: An expression creates a new reference and breaks the alias

affect any other variables that reference the same contents.
For example, in Figure 5.6, my_list and list_copy are aliases of the

same contents. When either one is changed, both are affected. If you were
to print out my_list and list_copy after these statement, you would find
that they are both [0, 10, 20, 30, 40].

The same things would happen if we used any methods that change the
list (or any object that has such methods). So for any mutable data structure,
aliasing is an issue.

Immutable data structures can also be aliased, but since they can’t be
changed, it never causes problems. For example, in Figure 5.7, a string is
aliased when it is copied. But the only way to change it is to construct a
new string during an assignment and the alias is removed.

Remember that any expression (that’s more complicated than a variable
reference) will result in a new reference being created. If this is assigned to
a variable, then there is no aliasing. This is what happened in Figure 5.7. It
also occurs with lists, as you can see in Figure 5.8.

Really Copying

If you want to make a copy of a variable that isn’t a reference, it’s necessary
to force Python to actually copy its contents to a new place in memory. This
is called cloning.

Cloning is more expensive than aliasing, but it’s necessary when you do
want to make a copy that can be separately modified.

5.6. REFERENCES 121

my_list

bigger_list

[0, 10, 20]

[0, 10, 20, 30]

my_list = [0, 10, 20]

Statements:

Result:

bigger_list = my_list + [30]

Figure 5.8: A calculation creates a new instance containing the results

my_list = [0, 10, 20]
list_copy = my_list[:]

Statements:

Result:

my_list

list_copy

[0, 10, 20]

[0, 10, 20]

Figure 5.9: Slicing a list forces copying of its elements

For lists, the slice operator can be used to create a clone. Since cloning
requires creating a new list, Python will copy whatever contents are needed
by the slice. In Topic 5.3, we saw that in a slice like [a:b], leaving out the
a starts the slice at the start of the original list, and leaving out the b goes
to the end of the list. If we combine these, we have a slice that refers to the
entire list: my_list[:].

For example, in Figure 5.9, you can see the slice operator being used to
copy the contents of a list. This creates a new list and reference. Now, the
lists can be changed independently.

You could also make a copy of a list with the list function that creates a
new list (out of the old one). So, list(my_list) would give the same result
as my_list[:].

122 UNIT 5. DATA STRUCTURES

For other data types, the copy module contains a copy function. This
function will take any Python object and clone its contents. If obj is a
Python object, this code will produce a clone in new_obj:

import copy

new_obj = copy.copy(obj)

This should work with any mutable Python object, including lists. It will
also clone immutable objects, but it’s not clear why you would want to do
that.

Summary

In this unit, you have learned the basics of lists in Python. You should also
have picked up more tools that can be used to manipulate strings.

The concept of references might seem odd at first, but it’s fundamental to
many programming languages. It’s one of those ideas that comes up often,
and you’ll have to be able to deal with it when it does.

Key Terms

• list

• append

• slice

• sequence

• mutable

• reference

• alias

• cloning

Unit 6

Algorithms

Learning Outcomes

• Use and compare two algorithms for searching in lists.

• Use sorting to solve problems.

• Design and implement functions that use recursion.

• Understand and implement a simple sorting algorithm.

• Describe some problems that aren’t computable.

• Use recursion to solve problems and implement algorithms.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Sections 4.9–4.11 in How to Think Like a Computer Scientist.

Topic 6.1 Searching

Searching is an important program in computing. “Searching” is the problem
of looking up a particular value in a list or other data structure. You generally
want to find the value (if it’s there) and determine its position.

We will only worry about searching in lists here. There are many other
data structures that can be used to store data; each one has its own searching
algorithms that can be applied.

123

124 UNIT 6. ALGORITHMS

def search(lst, val):

"""

Find the first occurrence of val in lst. Return its

index or -1 if not there.

>>> search([0, 10, 20, 30, 40], 30)

3

>>> search([0, 10, 20, 30, 40], 25)

-1

"""

for i in range(len(lst)):

if lst[i]==val:

we only care about the first match,

so if we’ve found one, return it.

return i

if we get this far, there is no val in lst.

return -1

Figure 6.1: Python implementation of linear search

Linear Search

For lists in general, you have to look through the whole list to determine if the
value is present or not. The algorithm for this is simple: just search through
the list from element 0 to the end: if you find the value you’re looking for,
stop; if you never do, return −1. (We will always use the “position” −1 to
indicate “not found”.)

This search algorithm is called linear search and a Python implementation
can be found in Figure 6.1.

What’s the running time of a linear search for a list with n items? At
worst, it will have to scan through each of the n elements, checking each one.
So, the running time is n.

This isn’t too bad, but if you have to do a lot of lookups in a list, it will
take a lot of time. We can do better if the list is arranged properly.

6.1. SEARCHING 125

The list method lst.index(val) does a linear search to find the
position of val in the list lst. If the value isn’t there, it causes
a ValueError instead of returning −1 like Figure 6.1. The “in”
operator (if val in lst:) also uses linear search.

Binary Search

Think about how you look up numbers in a phone book.

If you are trying to find out who has a particular number, you have to
look through the whole book like the linear search does. Starting with the
first person in the phone book and scan all of the phone numbers until you
find the phone number you’re looking for, or get to the end of the book.
So, it’s possible to use the phone book to translate a phone number to the
person’s name that owns it, but it’s very impractical.

On the other hand, what you usually do with a phone book is translate a
persons name to a phone number. This is a lot easier because phone books
are sorted by name, so you don’t have to scan every entry; you can quickly
find the person you’re looking for.

So, if we have a Python list that’s in order, we should be able to take
advantage of this to search faster. We can write an algorithm that formalizes
what you do with a phone book: use the fact that it’s sorted to find the right
general part of the book, then the right page, the right column, and the right
name.

The algorithm that is used to search in sorted lists has a lot in common
with the guessing game that was designed in Figure 1.3 and implemented in
Figure 3.11. You can think of this game as searching for the value the user
was thinking of in the list [1, 2, 3, ..., 100].

The search algorithm will use the same strategy: keep track of the first
and last possible position that the value you’re looking for can be. This will
start at the first and last items in the list, but can be narrowed quickly.

Then, look at the list item that’s halfway between the first and last pos-
sible values. If it’s too large, then you know that none of the values after it
in the list are possibilities: they are all too large. Now you only have to look
at the first half of the list, so the problem has immediately been chopped in
half.

Similarly, if the value we check in the middle is too small, then we only
have to look at values after it in the list. In the guessing game, we did the

126 UNIT 6. ALGORITHMS

exact same thing, except we had to ask the user to enter “less”, “more”, or
“equal”. Here, you can just check the value in the list.

This algorithm is called binary search. A Python implementation of bi-
nary search can be found in Figure 6.2.

Just like the original guessing game, this algorithm cuts the list we’re
searching in half with each iteration. So, like that algorithm, it has running
time log n.

Have a look back at Figure 3.17 for a comparison of n (linear search) and
log n (binary search). As you can see, the binary search will be much faster
for large lists.

But, to use binary search, you have to keep the list in sorted order. That
means that you can’t just use list.append() to insert something into the
list anymore. New values have to be inserted into their proper location, so
inserting takes a lot more work

Inserting into a sorted list takes up to n steps because Python has
to shuffle the existing items in the list down to make room. You
don’t see this since you can just use list.insert(), but it does
happen behind-the-scenes.

This means that keeping a sorted list and doing binary search is only
worthwhile if you need to search a lot more than you insert. If you have
some data that doesn’t change very often, but need to find values regularly,
it’s more efficient to keep the list sorted because it makes searches so much
faster.

Searching is covered in more detail in CMPT 225 and 307. These
courses discuss other data structures and how they can be used
to hold sets of data so searching, inserting, and deleting are all
efficient. There are data structures that can do insert, search, and
delete all with running time log n, but they are complicated and
aren’t covered until CMPT 307.

Topic 6.2 Sorting

Sorting is another important problem in computing science. It’s something
that comes up very often, in a variety of situations. There are many problems
that can be solved quite quickly by first sorting the values you need to work
with: once the values are in order, many problems become a lot easier.

6.2. SORTING 127

def binary_search(lst, val):

"""

Find val in lst. Return its index or -1 if not there.

The list MUST be sorted for this to work.

>>> binary_search([2, 4, 5, 6, 24, 100, 1001], 100)

5

>>> binary_search([2, 4, 5, 6, 24, 100, 1001], 10)

-1

>>> binary_search([2, 4, 5, 6, 24, 100, 1001], 2000)

-1

"""

keep track of the first and last possible positions.

first = 0

last = len(lst)-1

while first <= last:

mid = (first+last)/2

if lst[mid] == val:

found it

return mid

elif lst[mid] < val:

too small, only look at the right half

first = mid+1

else: # lst[mid] > val

too large, only look at the left half

last = mid-1

if we get this far, there is no val in lst.

return -1

Figure 6.2: Python implementation of binary search

128 UNIT 6. ALGORITHMS

word = raw_input("Enter the word: ")

counter = 0

letters = list(word) # converts to a list of characters.

’gene’ becomes [’g’,’e’,’n’,’e’]

letters.sort() # now identical letters are adjacent

above becomes [’e’,’e’,’g’,’n’]

for i in range(len(word)-1):

if letters[i]==letters[i+1]:

counter = counter + 1

if counter>0:

print "There are repeated letters"

else:

print "There are no repeated letters"

Figure 6.3: Checking for repeated letters with sorting

In the previous topic, you saw that searching is much faster if the list is
sorted first. Sorting takes longer than even a linear search, but if there are
going to be many searches, it is worth the work.

A list in Python can be put in order by calling its sort method:

>>> mylist = [100, -23, 12, 8, 0]

>>> mylist.sort()

>>> print mylist

[-23, 0, 8, 12, 100]

Example: Repeated letters with sorting

As an example of a problem where sorting can greatly speed up a solution,
recall the problem of finding repeated letters in a string. Figure 3.13 gives an
algorithm with running time n2 and Figure 3.14 is a Python implementation.

Now consider the program in Figure 6.3. It does the same thing as the
program in Figure 3.14, but it will be significantly faster than the previous
solution for long strings.

6.2. SORTING 129

0

200

400

600

800

1000

20 40 60 80 100

2 nlogn

n2

steps

n

Figure 6.4: Graph of the functions n2 and n log
2
n

The idea is that the program first sorts the letters of the string. Then, any
identical letters will be beside each other. So, to check for repeated letters,
you only have to skim through the characters once, looking at characters i
and i+1 to see if they are the same. If none are, then there are no repeated
letters.

The sort method has running time n log n on a list with n elements.
The rest of the program just scans once through the list, so it takes n steps.
The total running time for Figure 6.3 will be n log n + n. Removing the
lower-order terms, we get n log n.

See Figure 6.4 for a comparison of n2 and n log n. As you can see, the
new program that takes advantage of a fast sorting algorithm will be much
faster as n grows.

How to sort

Usually, you can use the sort method that comes with a list in Python when
you need to get items in order. But, sorting is important enough that you
should have some idea of how it’s done.

130 UNIT 6. ALGORITHMS

As noted above, the sort method of a list has running time n log n. In
general, it’s not possible to sort n items in less than n log n running time.
There are also some special cases when it’s possible to sort with running time
n. We won’t cover these algorithms here, though.

Algorithms that sort in n log n steps are fairly complicated and will
have to wait for another course. So will a proof of why that’s the
best you can do. If you’re really interested in n log n sorting, look
for mergesort or quicksort algorithms.

You probably have some idea of how to sort. Suppose you’re given a pile
of a dozen exam papers and are asked to put them in order by the students’
names. Many people would do something like this:

1. Flip through the pile and find the paper that should go first.

2. Put that paper face-down on the table.

3. Repeat from step 1 with the remaining pile, until there are no papers
left.

This method is roughly equivalent to the selection sort algorithm that
can be used on a list. The idea behind selection sort is to scan through a list
for the smallest element and swap it with the first item.

So, if we look at the list 6, 2, 8, 4, 5, 3, a selection sort will do the
following operations to get it in order. At each step, the parts of the list that
we know are sorted are bold.

Iteration Initial List Operation

1. 6, 2, 8, 4, 5, 3 swap 2 and 6
2. 2, 4, 8, 6, 5, 3 swap 3 and 4
3. 2, 3, 8, 6, 5, 4 swap 4 and 8
4. 2, 3, 4, 6, 5, 8 swap 6 and 5
5. 2, 3, 4, 5, 6, 8 swap 6 and 6 (do nothing)
6. 2, 3, 4, 5, 6, 8 swap 8 and 8 (do nothing)

2, 3, 4, 5, 6, 8

Pseudocode of the selection sort algorithm can be found in Figure 6.5.
A Python implementation can be found in Figure 6.6. This algorithm has
running time n2.

If you count the number of times the inner loop runs for each element,
you find that it takes n steps for the first element, then n− 1 for the second,

6.3. RECURSION 131

for every element e from the list,

for every element f from e to the end of the list,

if f < smallest ,
set smallest to f

swap smallest and e

Figure 6.5: Algorithm for selection sort

then n− 2, . . . , 2, 1. So, the total number of steps is

n
∑

i=1

i =
n(n− 1)

2
= n2/2− n/2 .

Removing lower-order terms and constants, you can see that the running
time is n2.

Selection sort will be quite slow for large lists; one of the n log n algorithms
should be used instead.

Sorting is covered in more detail in CMPT 125, 225, and 307. As
you progress, the focus is less on sorting itself and more on how it
is used to solve other problems.

Topic 6.3 Recursion

As we have seen many times, it’s possible for a function to call another
function. For example, in Figure 6.1, the search function uses both range

and len to create the appropriate loop.

But, it’s also possible for a function to call itself. This is useful when a
problem can be solved by breaking it into parts and solving the parts. This
technique is called recursion, and is very important since many algorithms
are most easily described recursively.

For example, consider calculating the factorial of a number. The factorial
of n is usually written n! and is the product of the numbers from 1 to n:
1× 2× 3× · · · × (n− 1)× n. The factorial function is often defined in terms
of itself:

n! =

{

1 for n = 0
n× (n− 1)! for n > 0

132 UNIT 6. ALGORITHMS

def selection_sort(lst):

"""

Sort lst in-place using selection sort

"""

for pos in range(len(lst)):

get the next smallest in lst[pos]

find the next smallest

small = lst[pos] # smallest value seen so far

smallpos = pos # position of small in lst

for i in range(pos+1, len(lst)):

check each value, searching for one

that’s smaller than the current smallest.

if lst[i] < small:

small = lst[i]

smallpos = i

swap it into lst[pos]

lst[pos], lst[smallpos] = lst[smallpos], lst[pos]

Figure 6.6: Python implementation of selection sort

def factorial(n):

"""

Calculate n! recursively.

>>> factorial(10)

3628800

>>> factorial(0)

1

"""

if n==0:

return 1

else:

return n * factorial(n-1)

Figure 6.7: Recursively calculate factorials

6.3. RECURSION 133

calculates

calls

calculates

calls

calculates

calls
3 * factorial(2)

factorial(3)

factorial(2)

2 * factorial(1)

factorial(1)

1 * factorial(0)

factorial(0)
returns 1

returns 1

returns 2

original call returns 6

Figure 6.8: Functions calls made to calculate factorial(3)

We can use this same definition to create a Python function that calculates
the factorial of a (positive) integer.

The code in Figure 6.7 defines a function that correctly calculates n! . It
does this by calling itself to calculate the factorial of n− 1.

How It Works

Whenever a function calls itself, you should think of a new copy of the func-
tion being made. For example, if we call factorial(3), while running, it
will call factorial(2). This will be a separate function call, with separate
arguments and local variables. It will run totally independently of the other
instance of the function.

Figure 6.8 contains a diagram representing all of the calls to the factorial
function required to calculate factorial(3). As you can see, factorial(3)

134 UNIT 6. ALGORITHMS

calls factorial(2), which itself calls factorial(1), which calls factorial(0).

Because of the way the factorial function is written, factorial(0)
returns one. Then, factorial(1) can complete its calculations and return;
then factorial(2) can finish. Finally, factorial(3) completes and returns
the result originally requested.

Once everything is put together, the function actually computes the cor-
rect value. This is made possible by the design of the function: as long as
the recursive calls return the right value, it will calculate the correct result
for n.

The idea that the function calls itself, or that many copies of the function
are running at one time will probably seem strange at first. What you really
need to remember is simple: it works. Python can keep track of several
instances of the same function that are all operating simultaneously, and
what each one is doing.

Understanding Recursion

When looking at a recursive algorithm, many people find it too complicated
to think of every function call, like in Figure 6.7. Keeping track of every step
of the recursion isn’t really necessary to believe that the function works, or
even to design one yourself.

When reading a recursive function, you should just assume that the recur-
sive calls return the correct value. In the example, if you take on faith that
factorial(n-1) returns (n − 1)! correctly, then it’s clear that the function
does the right thing in each case and actually calculates n! .

You can let the programming language take care of the details needed to
run it.

If you look at Figure 6.7 and assume that the recursive call works, then
it’s clear that the whole function does as well. The key to the logic here is
that the recursive calls are to smaller instances of the same problem. As
long as the recursive calls keep getting smaller, they will eventually hit the
n = 0 case and the recursion will stop.

When writing recursive functions, you have to make sure that the function
and its recursive calls are structured so that analogous logic holds. Your
function must make recursive calls that head towards the base case that
ends the recursion.

We will discuss creating recursive functions further in the next topic.

6.4. DESIGNING WITH RECURSION 135

Students who have taken MACM 101 may recognize this as being
very similar to proofs by induction. The ideas are very similar: we
need somewhere to start (base case), and some way to take a step
to a smaller case (recursive/inductive case). Once we have those,
everything works out.

Topic 6.4 Designing with Recursion

As an example of a recursive function, let’s look at the problem of reversing
a string. We will construct a recursive function that does this, so calling
reverse("looter") should return "retool".

In order to write a recursive function to do this, we need to view the
problem in the right way and create a recursive function that implements
our recursive algorithm.

Step 1: Find a Smaller Subproblem

The whole point of making a recursive call is to solve a similar, but smaller
problem. If we have decomposed the problem properly, we can use the re-
cursive solution to build a solution to the problem we are trying to solve.

In the factorial example, this relies on noticing that n! = n× (n− 1)! (in
almost all cases). Then, if we can somehow calculate (n− 1)! it’s easy to use
that to calculate n! .

To reverse the string, we have to ask: if we reverse part of the string, can
we use that to finish reversing the whole string? If we reverse the tail of the
string (string[1:], everything except the first character), we can use it.

For example, if we are trying to reverse the string "looter", the tail
(string[1:]) is or "ooter". If we make a recursive call to reverse this
(reverse(string[1:])), it should return "retoo". This is a big part of the
final solution, so the recursive call will have done useful work. We can later
use this to build the reverse of the whole string.

Step 2: Use the Solution to the Subproblem

Once you have taken the problem you’re given and found a subproblem that
you can work with, you can get the result with a recursive call to the function.

136 UNIT 6. ALGORITHMS

In the factorial example, we know that once we have calculated (n− 1)! ,
we can simply multiply by n to get n! . In the Python implementation, this
becomes n * factorial(n-1). If we put our faith in the correctness of
the calculation factorial(n-1), then this is definitely the correct value to
return.

When reversing a string, if we reverse all but the first character of the
string (reverse(string[1:])), we are very close to the final solution. All
that remains is to put the first character (string[0]) on the end.

Again using "looter" as an example, reverse(string[1:]) returns
"retoo" and string[0] is "l". The whole string reversed is:

reverse(string[1:]) + string[0]

This evaluates to "retool", the correct answer. In general, this expression
gives the correct reversal of string.

Again, in both examples the method is the same: make a recursive call
on the subproblem, and use its result to construct the solution you have been
asked to calculate.

Step 3: Find a Base Case

There will be a few cases where the above method won’t work. Typically
these will be the smallest cases where it’s not possible to subdivide the prob-
lem further.

These cases can simply be handled with an if statement. If the arguments
point to a base case, return the appropriate result. Otherwise, proceed with
the recursive solution as designed above.

In the factorial example, the identity n! = n × (n − 1)! isn’t true for
n = 0. In this case, we know the correct answer from the definition of
factorial: 0! = 1. In the implementation, we check for this case with an
if statement and return the correct result. In all other cases, the recursive
solution is correct, so we use it.

For reversing a string, there is also one case where the method outlined
above for the recursive case can’t be followed. Again, we look at the smallest
cases of the problem, which cannot be subdivided further.

What should be the result when we call reverse("")? Presumably, the
reverse of the empty string is "", but the above method won’t give this
result. In fact, if we try to extract element 0 from this string, it will cause
an IndexError since it doesn’t have a zero-th character. Since this case

6.4. DESIGNING WITH RECURSION 137

doesn’t match the recursive algorithm, it will be our base case and handled
separately.

We should also check other small cases: what is the reverse of a single-
character string? The function call reverse("X") should return "X". We
can check our recursive method for this case, when string is "X":

reverse(string[1:]) + string[0] == reverse("") + "X"

Since we just decided that reverse("") will return "", this becomes "" +

"X", which is "X". This is the correct result, so we don’t have to worry about
single-character strings as a base case: the recursive case already handles
them correctly.

It’s very important every recursive call will eventually get to a base case.
The recursive call that is made in the function must be at least one step
closer to the base case: the part we decide to solve recursively is smaller

than the original problem.
Remember that the base case is where the recursion will end. Once it

does, the base case will return the correct result (since we made sure it
did). From there, the recursive calls will begin to “unwind”, with each one
returning the correct result for the arguments it was given.

If this isn’t the case, the function will keep making more and more re-
cursive calls without ever stopping. This is called infinite recursion. Look
back at Figure 6.8 and imagine what it would look like if we didn’t have the
special case for num==0. It would keep making more and more calls until the
program was halted. This is analogous to the infinite loops you can create
with while.

Python will stop when the recursion passes a certain “depth”. It
will give the error “maximum recursion depth exceeded”. If you
see this, you have probably created infinite recursion.

Step 4: Combine the Base and Recursive Cases

Once we have identified the base case(s) and what recursive calculation to
do in other cases, we can write the recursive function.

Assembling the parts is relatively easy. In the function, first check to see
if the argument(s) point to a base case. If so, just return the solution for
this case. These should be very easy since the base cases are the smallest
possible instances of the problem.

138 UNIT 6. ALGORITHMS

if we have a base case,

return the base case solution

otherwise,

set rec result to the result of a recursive call on the subproblem
return the solution, built from rec result

Figure 6.9: Pseudocode for a recursive algorithm

If we don’t have a base case, then the recursive case applies. We find our
subproblem and call the same function recursively to solve it. Once that’s
done, it should be possible to transform that into the solution we need. Once
we know it, it will be returned.

Pseudocode for a recursive function can be found in Figure 6.9. Compare
this with the implementation of factorial in Figure 6.7. Figure 6.7 doesn’t
put the recursive result in a variable because the calculation is so short, but
it’s otherwise the same.

The example of reversing a string has been implemented in Figure 6.10.
It uses the parts constructed above and the outline in Figure 6.9. It does
correctly return the reverse of any string.

Debugging Recursion

Debugging a recursive function can be trickier than non-recursive code. In
particular, when designing the recursive function, we made an assumption:
that the recursive call to the same function returned the correct result. Since
the function is relying on itself working, tracing problems can be difficult.

The key to finding errors in recursive code is to first side-step this problem.
There are cases in the recursive function that don’t make recursive calls: the
base cases. This gives us somewhere to start testing and debugging.

The first thing that should be done when testing or trying to find errors
is to examine the base case(s). For example, in the above examples, the first
things to test would be:

>>> factorial(0)

1

>>> reverse("")

’’

6.4. DESIGNING WITH RECURSION 139

def reverse(string):

"""

Return the reverse of a string

>>> reverse("bad gib")

’big dab’

>>> reverse("")

’’

"""

if len(string)==0:

base case

return ""

else:

recursive case

rev_tail = reverse(string[1:])

return rev_tail + string[0]

Figure 6.10: Recursively reversing a string

If the base cases work correctly, then at least we have that to work with. If
not, we know what code to fix.

Once we know the base cases are working, we can then easily test the
cases that call the base case. That is, we now want to look at the arguments
to the function that are one step away from the base case. For example,

>>> factorial(1)

1

>>> reverse("X")

’X’

>>> reverse("(")

’(’

In each case here, the recursive code runs once, and it calls the base case.
We can manually check the calculations in these cases and confirm that our
expectations match the results.

If these aren’t correct, then there is something wrong with the way the
recursive code uses the base case (which we have already tested) to compute
the final solution. There are a couple of possibilities here: the wrong recursive

140 UNIT 6. ALGORITHMS

call might be made, or the calculation done with the recursive result could
be incorrect. Both of these should be checked and corrected if necessary.

If these cases work, but the overall function still isn’t correct, you can
proceed to cases that are another step removed (two steps from the base
case). For example, factorial(2) and reverse("Ab"). You should quickly
find some case that is incorrect and be able to diagnose the problem.

Another Example

As a final example of recursion, we will create a function that inserts spaces
between characters in a string and returns the result. The function should
produce results like this:

>>> spacedout("Hello!")

’H e l l o !’

>>> spacedout("g00DbyE")

’g 0 0 D b y E’

We can work through the steps outlined above to create a recursive solu-
tion.

1. [Find a Smaller Subproblem.] Again, we look for cases that are one
“step” smaller and can contribute to an overall solution. Here, we will
take all but the last character of the string, so for "marsh", we will
take the substring "mars".

The recursive call will be spacedout(string[:-1]).

2. [Use the Solution to the Subproblem.] If the recursive is working cor-
rectly, we should get a spaced-out version of the substring. In the
example, this will be "m a r s". We can use this to finish by adding
a space and the last character to the end.

So, the final result will be rec_result + " " + string[-1].

3. [Find a Base Case.] The above method clearly won’t work for the
empty string since there is no last character to remove. In this case,
we can just return the empty string.

But, the above also won’t work for strings with a single character. The
recursive method applied to "X" will return " X", with an extra space
at the beginning. We will have to handle these as a base case as well:
the correct result is to return the same string unchanged.

6.4. DESIGNING WITH RECURSION 141

def spacedout(string):

"""

Return a copy of the string with a space between

each character.

>>> spacedout("ab cd")

’a b c d’

>>> spacedout("")

’’

>>> spacedout("Q")

’Q’

"""

if len(string) <= 1:

return string

else:

head_space = spacedout(string[:-1])

return head_space + " " + string[-1]

Figure 6.11: Recursively putting spaces between characters in a string

In fact, these two cases can easily be combined. If the string has 0 or
1 characters, it can be returned unchanged.

4. [Combine the Base and Recursive Cases.] The above work has been
combined in the implementation in Figure 6.11.

Check-Up Questions

◮ Repeat the spaced-out string example using everything but the first charac-
ter as the subproblem. That is, for the string "hearth", the subproblem
should be "earth", instead of "heart". You should be able to get a
different recursive function that produces the same results.

◮ Write a recursive function list_sum(lst) that adds up the numbers in
the list given as its argument.

◮ Write a recursive function power(x,y) that calculates xy, where y is a
positive integer. To create a subproblem, you will have to decrease one of

x or y. Which one gets you a useful result?

142 UNIT 6. ALGORITHMS

Topic 6.5 What isn’t computable?

Throughout this course, we have solved many problems by creating algo-
rithms and implementing the algorithms in Python. But, there is a funda-
mental question here: are there problems that you can’t write a computer
program to solve?

The answer is yes. It’s possible to prove that, for some problems, it’s
impossible to write a program to solve the problem. That means that the
lack of a solution isn’t a failing of the programming language you’re using,
your programming abilities, or the amount of time or money spent on a
solution. There is no solution to these problems because it’s fundamentally
impossible to create one with the tools we have available to do computations.

The Halting Problem

For example consider the following problem:

Consider a particular program. Given the input given to the
program, determine whether or not the program will ever finish.

This problem is called the halting problem. The basic idea is to decide
whether or not a program “halts” on particular input. Does it eventually
finish or does it go into an infinite loop?

This is something that would be very useful to be able to compute. The
Python environment could have this built in and warn you if your program
was never going to finish. It would be very helpful when it comes to debug-
ging.

Unfortunately, it’s impossible to write a program that looks at any pro-
gram to determine whether or not it halts.

Suppose someone comes along who claims to have created a function
halts(prog, input) that solves the halting problem: it returns True if the
program in the file prog halts on the given input and False if not. You write
the program in Figure 6.12 and ask if you can test their function.

This program is based on asking the halts function what happens when
a program is given itself as input. So, we imagine what would happen if you
ran a program and then typed its filename and pressed enter. Maybe that
isn’t sensible input for the program but that doesn’t matter: we only care if
the program halts or not, not if it does something useful.

6.5. WHAT ISN’T COMPUTABLE? 143

prog = raw_input("Program file name: ")

if halts(prog, prog):

while True:

print "looping"

else:

print "done"

Figure 6.12: Fooling a function that claims to solve the halting problem.

Does the program in Figure 6.12 halt? Sometimes. If its input is a
program that halts when given itself as input, Figure 6.12 enters an infinite
loop. If the input program doesn’t halt, then the program in Figure 6.12
stops immediately.

Suppose we run the program in Figure 6.12 and give it itself as input. So,
we enter the file name of the program in Figure 6.12 at the prompt. What
answer does the program give?

Without knowing anything about the halts function, we know that it will
always give the wrong answer for these inputs. These are the two possibilities:

1. halts("fig6.12.py", "fig6.12.py") returns True. Then the pro-
gram in Figure 6.12 would have entered an infinite loop: it should have
returned False.

2. halts("fig6.12.py", "fig6.12.py") returns False. Then the pro-
gram in Figure 6.12 would have printed one line and stopped: it should
have returned True.

So, no matter what claims are made, a program that claims to compute
the halting problem will always make some mistakes.

The idea of feeding a program itself as input might seem strange
at first, but it’s a perfectly legitimate thing to do. It should be
enough to convince you that there are some inputs where a halting
function fails. There will be many more for any particular attempt.

There’s nothing that says you can’t write a program that answers the
halting problem correctly sometimes. The point is that the problem in gen-
eral is impossible to solve with any computer.

144 UNIT 6. ALGORITHMS

Virus Checking

One problem that you may have had to deal with in the real-world is keeping
viruses away from your computer.

A computer virus is a program that is designed to spread itself from one
location to another—between different programs and computers. There are
many programs that scan your computer for viruses and report any problems.

All of these programs require an up to date list of virus definitions. Every
week or so, they download a new list of viruses over the Internet. These
“definitions” contain information like “files that contain data like this. . . are
infected with virus X.”

You may have wondered why this is necessary: why can’t virus checkers
just look for programs that behave like viruses. By definition, a virus has
to be a program that reproduces; just look for programs that put a copy of
themselves into another program.

But again, we run into a problem of computability. Writing a program
to check for programs that reproduce themselves isn’t possible. So, it’s im-
possible to write a perfect anti-virus program. The most effective solution
seems to be the creation of lists of viruses and how to detect them. A fairly
simple program can scan a hard drive looking for known virus signatures.

The downside is that the program will only detect known viruses. When
new viruses are created, they must be added to the list. As a result, it’s
necessary to update virus definition files regularly.

Again, remember that these problems (halting and virus checking) aren’t
impossible to compute because of some limitation in a programming lan-
guage or the computer you’re working with. They are impossible with every

computational device anybody has ever thought of.

Summary

This unit covers several important aspects of algorithms and computability.
Sorting, searching, and recursion are important techniques for designing effi-
cient algorithms; you will see much more of them if you go on in Computing
Science.

The uncomputability topic is important to the way problems are solved
with computer. The same problems can be solved with any computer and
there are some problems that can’t be solved with any computer.

6.5. WHAT ISN’T COMPUTABLE? 145

Key Terms

• searching

• linear search

• binary search

• sorting

• selection sort

• recursion

• base case

• uncomputable

• halting problem

• virus checking

146 UNIT 6. ALGORITHMS

Unit 7

Working with Files

Learning Outcomes

• Create a program that outputs information to a text file.

• Create a program that reads a text file and does some simple processing
of its contents.

• Describe the role on the operating system.

• Explain in general terms how a disk stores information.

Learning Activities

• Read this unit and do the “Check-Up Questions.”

• Browse through the links for this unit on the course web site.

• Read Chapter 11 in How to Think Like a Computer Scientist.

Topic 7.1 File Output

Up to this point, we have had many ways to manipulate information in the
computer’s memory, but haven’t had any way to write information to a file
on a disk. Doing so will allow us to save information permanently, and create
files that can be loaded into other programs.

We will only discuss reading and writing text files in this course. These
are files that consist only of ASCII characters. These files can be opened and
edited with a text editor like the IDLE editor, Notepad, or Simpletext.

147

148 UNIT 7. WORKING WITH FILES

dataout = file("sample.txt", "w")

dataout.write("Some text\n")

dataout.write("...that is written to a file\n")

dataout.close()

Figure 7.1: Writing text to a file

Some text

...that is written to a file

Figure 7.2: File created by Figure 7.1

Writing data to a text file is quite easy in Python. Writing a text file is
a lot like printing text to the screen with print.

Before we can send information to a file, it must be opened . The file

function opens a file on the disk for our use, and returns a file object that
represents the file. For example,

dataout = file("sample.txt", "w")

This opens file file sample.txt in the current directory for write (the "w"

indicates that we will write to the file). A file object is returned and stored
in dataout. Note that when a file is opened for write, any existing contents
are discarded.

When you’re done with a file object, is should be closed with the close

method. This writes all of the data to the file and frees it up so other
programs can use it. For example,

dataout.close()

When we have a file object opened for write, we can send text to it. This
text will be stored in the file on disk. The standard way to write text to a
file object is to use its write method. The write method takes a string as
its argument, and the characters in the string are written to the file.

See Figure 7.1 for a complete program that creates a text file. This
program produces a file sample.txt; its contents can be seen in Figure 7.2.

In the two calls to the writemethod, you can see that a newline character
is produced to indicate a line break should be written to the file. In a Python
string, \n is used to indicate a newline character.

7.1. FILE OUTPUT 149

import math

csvfile = file("sample.csv", "w")

for count in range(10):

csvfile.write(str(count) + ",")

csvfile.write(str(count*count) + ",")

csvfile.write(str(math.sqrt(count)) + "\n")

csvfile.close()

Figure 7.3: Writing text to a file

When using print, a newline character is automatically generated after
each statement. When using the write method, this must be done manually.
A line break is produced for every \n in the argument. For example, there
would be a blank line between the two lines of text if this statement had
been used:

dataout.write("Some text\n\n")

There is actually a form of the print statement that can be used
on files. The statement print >>dataout, "Hello world" will
“print” to the file object dataout.

Text files in specific formats can be used by many programs. As long
as you know how information must be arranged in the file, it’s possible to
write a Python program to create a file than can then be imported/loaded
in another program. This can be very useful in many applications.

Spreadsheet programs can import comma-separated value (or CSV) files.
The format for these files is simple. Each line in the file represents a row in
the spreadsheet; the cells on each line are separated by commas.

It is quite easy to produce this format in a program. For example, the
program in Figure 7.3 produces a CSV file with three columns: the first
column is a number, the second is the square of the number, and the third
is the square root. A row is produced for every number in range(10).

The output of this program can be seen in Figure 7.4. This file can be
loaded into any spreadsheet program, or any other program that can import
CSV files. This way, a data produced in a Python program can be passed to
a spreadsheet or other program for further manipulation or analysis.

150 UNIT 7. WORKING WITH FILES

0,0,0.0

1,1,1.0

2,4,1.41421356237

3,9,1.73205080757

4,16,2.0

5,25,2.2360679775

6,36,2.44948974278

7,49,2.64575131106

8,64,2.82842712475

9,81,3.0

Figure 7.4: File created by Figure 7.3

The csv module contains objects that allow even more convenient
reading and writing of CSV files. It correctly handles cells that
contain commas and other special characters, which is tricky to do
by-hand.

Check-Up Questions

◮ Run the program in Figure 7.3; it will produce a file sample.csv. Load this
into a spreadsheet program.

Topic 7.2 File Input

Reading data from a file is somewhat like getting input from the user with
raw_input. The same problems arise: bad input and extracting the informa-
tion we want from the string of characters. But, unlike user input, we can’t
just ask the question again if we get bad input. We either have to process
the data in the file or fail outright.

A file can be opened for reading the same way as for writing, except we
use "r" to indicate that we want to read the file.

datain = file("sample.txt", "r")

Again, a file object is returned and we store it in the variable datain. File
input objects should also be closed when you’re done using them.

7.2. FILE INPUT 151

filename = raw_input("Enter the file name: ")

datain = file(filename, "r")

for line in datain:

print len(line)

datain.close()

Figure 7.5: Reading a text file and counting line lengths

The usual way to read a text file in Python is to process it one line at a
time. Files can be very large, so we probably don’t want to read the whole
file into memory at once. Handling one line at a time doesn’t use too much
memory, and is often the most useful way to look at the file anyway.

In Topics 5.2 and 5.4, we saw that the for loop in Python can be used
to iterate over every item in any list or string. It can also be used to iterate
through file objects. The body of the for is executed once for every line in
the file.

For example, the code in Figure 7.5 reads a text file and prints the number
of characters on each line. If we give it the file from Figure 7.2, the output
would be:

Enter the file name: sample.txt

10

29

Again, the for loop reads just like what it actually does: “for (every)
line in (the) datain (file object). . . ”.

Processing File Input

Have a more careful look at the text in Figure 7.2, and the sample output of
Figure 7.5 above. The first line in Figure 7.2 is “Some text” (9 characters),
but the program reports the length of the line as 10. Where did that extra
character come from?

Look back at the code in Figure 7.1 that produced the file. The first
call to write actually produces 10 characters: 9 “visible” characters and
a newline. It we modified Figure 7.5 to just output the contents of line

152 UNIT 7. WORKING WITH FILES

instead of the length, we would see an extra line break caused by the newline
character in the string.

There are a couple of ways to deal with the newline character if you don’t
want it in the string as you process it. The easiest is to just discard the last
character of each line:

for line in datain:

line = line[:-1]

...

Assuming there’s a newline on the last line of the file, this will work. If you
want to get rid of the newline and any other spaces or tabs at the end of
each line, the rstrip string method can do that:

for line in datain:

line = line.rstrip()

...

Remember that this removes any trailing whitespace, which may not be
appropriate in all situations.

Once the newline character has been removed (if necessary), you can
process the line as you would with any other string. Of course, there are
many different ways you might need to handle the lines of a file.

As an example, we will read a file that contains a time on each line:
each time will be in hh :mm :ss format. We will calculate and report the
total number of seconds represented by each time. For example, 1:00:00 is
60× 60 = 3600 seconds.

In order to do this, we will read each line of the file (as in Figure 7.5).
Any trailing whitespace will be removed from the line with rstrip. Finally,
the line can be split into hour, minute, second sections by the split string
method.

The split method is used to divide a string into “words” that are sepa-
rated by a given delimiter. In this case, we want to divide the string around
any colon characters, so the method call will be string.split(":"). This
will return substrings for the hour, minute, and second, in order.

Once we have strings for each of the hour, minute, and second, these can
be converted to integers and the number of seconds easily calculated. This
has been done in Figure 7.6. Figure 7.7 contains a sample input file, and
Figure 7.8 contains the output when the program is run.

7.2. FILE INPUT 153

timefile = file("times.txt", "r")

total_secs = 0

for line in timefile:

break line up into hours, minutes, seconds

h,m,s = line.rstrip().split(":")

calculate total seconds on this line

secs = 3600*int(h) + 60*int(m) + int(s)

total_secs += secs

print secs

timefile.close()

print "Total:", total_secs, "seconds"

Figure 7.6: Program to read a series of times in a file

2:34:27

0:58:10

01:09:56

0:23:01

10:12:00

Figure 7.7: Input file (times.txt) for Figure 7.6

9267

3490

4196

1381

36720

Total: 55054 seconds

Figure 7.8: Output of Figure 7.6

154 UNIT 7. WORKING WITH FILES

Topic 7.3 The Operating System

In Topic 7.2, you didn’t have to know what part of the disk contained the
file, you only had to know its file name to get at its contents.

Similarly, in the Topic 7.1, when you wanted to write data to a file, you
didn’t have to actually know how information was arranged on the disk or
what part of the disk your file was being written to. When your data is
written to the disk, something has to make sure you’re given a part of the
disk that isn’t being used by another file; if you’re using an existing file name,
the old version has to be overwritten; and so on.

All of this is taken care of by the operating system. The operating system
is a piece of software that takes care of all communication with the computer’s
hardware. The operating system handles all communications with the hard
disk, printer, monitor, and other pieces of hardware. Thus, it can make sure
that no two application programs are using the same resource at the same
time.

When we write files, we are relying on the operating system to give us
parts of the hard disk, and put our data there so we can retrieve it later.
Since the OS takes care of all of this, we don’t have to worry about it when
we’re programming. The operating system is also responsible for allocating
parts of the computer’s memory to particular programs; this is necessary
when we use variables in a program.

Modern operating systems come bundled with many applications: file
managers, Wordpad, Media Player, iPhoto, and so on. Microsoft has even
claimed that some of these (notably, Internet Explorer) are inseparable from
the operating system. Still, they are application programs, not really part
of the operating system, according to its definition. Whether or not they
can be separated from the OS is another problem that has more to do with
marketing than computing science.

So, what really separates the operating system from other software is
that the OS does all of the communication with hardware. It also mediates
conflicts (if two applications want to access the hard disk at the same time)
and allocates resources (giving out memory and processor time as needed).
Figure 7.9 summarizes the communication between the various pieces of the
system.

In Figure 7.9, there is one user (Langdon) who has four applications open.

7.4. DISKS AND FILES 155

IDLE Solitaire

display printerhard disk

User(s)

Applications

Operating System

Hardware

Windows 7

MS Word

Langdon

.

Firefox

Figure 7.9: Communication between the user, applications, OS, and hard-
ware

Whenever any of these applications needs to interact with the computer’s
hardware (open a file, draw something on the screen, get keyboard input,
and so on), it makes a request through the operating system. The operating
system knows how to talk to the hardware (through device drivers) and fills
these requests.

Having the OS in the middle means that the applications don’t have to
worry about the details of the hardware. If an application wants to print, it
just asks the OS to do the dirty work. If not for the OS, every application
would have to have its own printer drivers and it would be very hard to avoid
problems if several tried to print at once.

The role of the operating system and how it does its job are ex-
plored further in CMPT 300 (Operating Systems). The interaction
between hardware and the OS is discussed briefly in CMPT 250
(Computer Architecture).

Topic 7.4 Disks and Files

When we read and wrote files in Topics 7.1 and 7.2, we took for granted that
the operating system could put the information on the disk and get it back
later. This is no small job for the OS to do—we should look a little more at
what happens.

156 UNIT 7. WORKING WITH FILES

Note that whenever we’re talking about storing information, a disk can
refer to any device you can use in a computer to store information. The
storage must keep the information when the computer is turned off, so the
computer’s memory doesn’t count. These are referred to as nonvolatile stor-

age. They include:

• hard drive: fast high capacity storage that is used to store the operating
system, applications, and most of your data on a computer.

• floppy disk : slow low capacity disks that can be easily transported.

• flash media cards : small storage devices with no moving parts. These
are often used with digital cameras, MP3 players, and other portable
devices

• USB “disks”: small keychain-sized devices that can be connected di-
rectly to a USB port on a computer and then easily transported to
another.

• MP3 player or digital camera: These can often be connected directly
to your computer and transfer information to and from built-in storage
(or any inserted media cards).

• compact disc: used to distribute programs and other information since
they are high capacity and cheap to produce. You can’t write to com-
pact discs (at least, not quite the same way you can to the other devices
listed here).

All of these are treated as “disks” by the operating system. As far as
the user and programmer are concerned, they all work the same way. The
operating system makes sure they all behave the same way as far as the user
or programmer is concerned, regardless of how they work.

Once the operating system knows how to physically store information on
all of these “disks”, it still has to arrange the information so that it can find
it later. When your program asks for a particular file, the computer has to
know what information on the disk corresponds to that file; if you change
the file, it has to change the information on the disk, adding or removing the
space reserved for the file as necessary.

The operating system arranges information on the disk into a file system.
A file system is a specification of how information is stored on a disk, how
to store directories or folders, information about the files (last modified date

7.4. DISKS AND FILES 157

Figure 7.10: A disk divided into blocks

and access permissions, for example), and any other information that the
computer has to store to keep everything working.

The space on the disk is divided up into disk blocks. The block size can
vary, but is most commonly 4 kB. The blocks are then allocated to the various
files that are stored on the disk. Figure 7.10 shows that the blocks on a disk
might look like.

Figure 7.10 could be either a hard disk or floppy disk. The insides look
the same, but information can be stored much more densely on a hard disk
because it’s sealed in its enclosure. A read head sits above the disk surface
and can read information from the disk as it spins below it. The time it takes
to get information from the disk depends on two factors: the amount of time
it takes to position the head so it’s the right distance from the centre of the
disk, and the speed the disk is rotating.

If the filesystem uses 4 kB blocks, a 10 kB file would need three blocks.
That means that the file is actually using 12 kB of disk space—the last 2 kB
in the last block are wasted. This is refereed to as internal fragmentation.
Internal fragmentation occurs whenever some of the disk block is left over
after the file is written—every file on the disk (unless it exactly fills the block)
will cause a little internal fragmentation.

When the computer tries to read this file, it will have to read the infor-
mation from three widely separated blocks on the disk. This will be slow
since you have to wait for the read head to move and disk to spin to the right
position three times.

If you defragment your hard drive, it repairs external fragmentation and
moves scattered blocks like this together. In the example, we might end up

158 UNIT 7. WORKING WITH FILES

Figure 7.11: The blocks of a file defragmented

with the three-block file stored as in Figure 7.11. Now, reading them will be
much faster: you only have to move the read head once and the three block
will spin under the read head quickly since they are adjacent.

Topic 7.5 Example Problem Solving: File

Statistics

As an example of using file input, we will create a program that opens up a
text file specified by the user and outputs some statistics about it. We want
the program to count the number of lines, words, and characters in the file.

The first step will be to get the file name and open the file. This has been
done in Figure 7.12. This program also loops through the lines in the file,
counting as it goes.

We can now test this program with a sample file, as seen in Figure 7.13.
When we run the program in Figure 7.12 and give it this file, the output is:

Filename: wc-test.txt

Total lines: 6

There are six lines in the input file, so we’re on the right track.

Next, we can try to count the number of characters. Since each line in
the file is a string, we can just use len to get the number of characters in
the string and add it to another counter. This has been done in Figure 7.14.

7.5. EXAMPLE PROBLEM SOLVING: FILE STATISTICS 159

get the filename and open it

filename = raw_input("Filename: ")

file = open(filename, "r")

initialize the counter

total_lines = 0

for line in file:

do the counting

total_lines += 1

summary output

print "Total lines:", total_lines

Figure 7.12: Word count: open file and count lines

"One trick is to tell them stories that don’t go anywhere, like

the time I caught the ferry over to Shelbyville. I needed a new

heel for my shoe, so I decided to go to Morganville, which is

what they called Shelbyville in those days. So I tied an onion

to my belt, which was the style at the time..."

- Abe

Figure 7.13: Word count test file

160 UNIT 7. WORKING WITH FILES

get the filename and open it

filename = raw_input("Filename: ")

file = open(filename, "r")

initialize the counters

total_lines = 0

total_chars = 0

for line in file:

do the counting

total_lines += 1

total_chars += len(line)

print total_chars

summary output

print "Total lines:", total_lines

print "Total characters:", total_chars

Figure 7.14: Word count: counting characters 1

Notice that a print statement has been added to the loop to help with
debugging. When this program is run on our sample data file, we get this
output:

Filename: wc-test.txt

64

129

191

255

305

311

Total lines: 6

Total characters: 311

It’s not easy to check if this is correct or not. The program probably
should be tested on a smaller file, where we can actually count the number
of characters by hand to verify. But, the debugging output has given us
something to work with.

Look at the last line of Figure 7.13. It contains five characters: dash,
space, A, b, e. Why did our program count 311− 305 = 6 characters on that

7.5. EXAMPLE PROBLEM SOLVING: FILE STATISTICS 161

get the filename and open it

filename = raw_input("Filename: ")

file = open(filename, "r")

initialize the counters

total_lines = 0

total_chars = 0

for line in file:

clean any trailing whitespace off the string

line = line.rstrip()

do the counting

total_lines += 1

total_chars += len(line)

print total_chars

summary output

print "Total lines:", total_lines

print "Total characters:", total_chars

Figure 7.15: Word count: counting characters 2

line?

Like we saw in Topic 7.2, reading the lines from the file includes the
newline characters. But, we don’t want to count the “invisible” characters
in the file. We can use rstrip to get rid of these, along with any trailing
spaces, before we do the counting. The program in Figure 7.15 does this.

Now when we run the program on the sample file, we get this output:

Filename: wc-test.txt

63

127

188

251

298

303

Total lines: 6

Total characters: 303

162 UNIT 7. WORKING WITH FILES

Now we get the right number of characters on the last line. Testing with
some other sample files confirms that we are now counting the characters on
each line properly.

We can now turn to the problem of counting the number of words on each
line. Your first thought might be to just count the number of spaces on the
line, but that won’t work. If there are several spaces together (the test file
has two spaces after each period), then that will count as two “words”.

In order to count the number of words in the line, we will to check for
the beginning of each word. This takes some more careful examination of the
string. Since it’s more complicated than the other counting we’ve done, it
has been split into a separate function, words.

The function words characterizes the ”start of a word” as a non-space
character after by either the start of the string or a space.

See Figure 7.16 for the implementation. Since it’s in a function, we can
test it separately:

>>> words("abc-def ghi")

2

>>> words("abcde f ghijkl")

3

>>> words("... ,,, :::")

3

>>> words("")

0

The final program is assembled in Figure 7.16. If we run it on our test
program, we get this output:

Filename: wc-test.txt

Total lines: 6

Total words: 62

Total characters: 303

Check-Up Questions

◮ Try Figure 7.15 on a text file with a few shorter lines in it. Is it counting
the number of characters correctly?

◮ Make a copy of Figure 7.16. Print out the number of words after each
iteration of the for line in file loop. Does it match the number of
words you count on each line?

7.5. EXAMPLE PROBLEM SOLVING: FILE STATISTICS 163

def words(line):

"""

Count the number of words in the string line.

"""

words = 0

for pos in range(len(line)):

line[pos] is the start of a word if it is a non-space

and it is either the start of string or comes after

a space

if line[pos]!=" " and (pos==0 or line[pos-1]==" "):

words += 1

return words

get the filename and open it

filename = raw_input("Filename: ")

file = open(filename, "r")

initialize the counters

total_lines = 0

total_chars = 0

total_words = 0

for line in file:

clean any trailing whitespace off the string

line = line.rstrip()

do the counting

total_lines += 1

total_chars += len(line)

total_words += words(line)

summary output

print "Total lines:", total_lines

print "Total words:", total_words

print "Total characters:", total_chars

Figure 7.16: Word count: final program

164 UNIT 7. WORKING WITH FILES

◮ In Figure 7.16, the if condition in the words function checks pos+1 against
len(line)-1. What is the purpose of the plus one and minus one?

Summary

Working with files gives you a way to “save” things in your program. In-
formation you put in a file can be read back in the next time the program
runs.

Hopefully you have an idea of how to read and write simple text files
with a Python program. You should also have some idea of what actually
happens when a program, one you write or any other, stores information on
a disk.

Key Terms

• text file

• file object

• newline character

• operating system

• disk

• file system

• disk block

• internal fragmentation

• external fragmentation

Part III

Appendices

165

Appendix A

Technical Instructions

Learning Outcomes

This material will help you learn how to use the software you need to do your
work in this course. You won’t be tested on it.

Learning Activities

• Install the Python software, if you’re working with your own computer.

• Follow along with the Python instructions yourself and make sure you
can work with the tools.

• Explore the software more on your own.

Topic A.1 Installing Python

We are going to use Python to write and run Python programs in this course.
The following tutorial will help you get familiar with some of the functionality
of the Python software.

This installation tutorial assumes that you’re using Windows. Python is
available for the MacOS and for Linux as well. You can use any operating
system for your work in this course. You can also use Python in a computer
lab on-campus. If you do, Python is already installed and you can skip to
the next topic.

You can download the most recent version of Python from the Python web
site, http://www.python.org/download/. Click on the link that says: “Python

167

http://www.python.org/download/

168 APPENDIX A. TECHNICAL INSTRUCTIONS

2.x.x Windows installer” (where 2.x.x is the most recent release of version
2). Save this file on your desktop.

Do not download Python 3: it contains some incompatibilities that this
Guide (and most other Python tutorials) do not take into account. For the
a Macintosh, download the 32-bit version of Python, not the 64-bit version.

Once the file has downloaded, double-click the installation file. You can
safely accept all of the defaults for the installation. Make sure you install at
least the “Python interpreter and libraries” and “Tck/Tk”. You will need
those for this course. You will probably want the help files as well.

You can delete the installation file you downloaded once the installation
is complete.

Topic A.2 Using Python

There are two different interfaces where you can write Python code: IDLE

(Integrated DeveLopment Environment) or the Command Line. We will use
IDLE in this course since it provides a graphical interface for you to work
with. You can start IDLE by selecting “IDLE (Python GUI)” from the Start
menu if you’re using Windows.

Note that in this sections, the screen shots are from Windows, but the
instructions apply to any operating system.

The usual first program that’s written in every programming language is
one that prints “Hello World” on the screen. Let’s see how we can keep up
the old tradition in Python. Open up the IDLE if you haven’t already. Your
IDLE window will have some text similar to this:

Python 2.3.4 (#53, May 25 2004, 21:17:02) [MSC v.1200 32

bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more

information.

IDLE 1.0.3

>>>

The >>> at the bottom is the prompt for writing the statements. When
you open up IDLE, your cursor should by default be in front of this prompt.
Type in the following statement in IDLE:

print "Hello World!"

A.2. USING PYTHON 169

Figure A.1: IDLE, after running a “Hello World” statement

You have just executed your first Python statement and your IDLE window
should look like Figure A.1.

Your first Python program

Typing statements in the IDLE environment isn’t the only way to execute
Python statements. You can make programs, store them and run them later.
These programs are also called script files and are usually saved with a .py
extension. Let’s make a simple script and run it. Select “New Window” from
the File menu in IDLE. An editor window will appear on your screen.

Type the same statement as you did in the IDLE earlier:

print "Hello World!"

Select the “Save As. . . ” option from the File menu and save the program as
HelloWorld.py . Don’t forget the .py extension.

Now run this script file. The easiest way to run and debug your script file
is to press F5 while your script file’s editor window. The script file should
run in the main IDLE window, displaying its output below the other output
that previous commands have created.

If you change your script file and try to run it, you will be asked if you
want to save your file—you must save the program before it can be run.
Change the “Hello World” program that you just made: add the following
print statement after the first one:

print "This is going to be fun!"

170 APPENDIX A. TECHNICAL INSTRUCTIONS

Figure A.2: IDLE, displaying a syntax error

Press F5 now. The following window will appear asking you to save the
source first. Click on OK and the IDLE will display the out put of your
script file.

If there are any syntax errors in your script file, those are identified auto-
matically before the file is run. For example, in Figure A.2 an error message
popped up when F5 was pressed. The error here is the incorrect indenting of
the second print statement—the cursor is moved the the interpreter’s best
guess at the location of the error. Indentation plays a vital role in Python
programming. You will learn more about this as you proceed in the course.

Once any syntax errors are fixed, the script will run. There might be
more errors that the interpreter can’t catch until its running the program.
For example, in Figure A.3, the interpreter has caught an error. When it got
to the word squidport, it didn’t know what to do with it. It can’t catch
this any earlier since you might have created a variable or function called
squidport; the only way to tell for the computer to tell for sure was to run
it and see.

The error message indicates that it noticed the error on line 3 of the
current program (“-toplevel-”). The IDLE editor tells you the line number
that the cursor’s on in the bottom left corner. In Figure A.3, “Ln: 4”
indicates that the cursor is on line 4, just below the error. The “Ln: 21”
in the interpreter window isn’t what we’re interested in: the error message

A.3. COMPUTING ACCOUNTS 171

Figure A.3: IDLE, displaying a run-time error

always gives lines in the source file.

Remember: if you want to save the program so you can run it later
(or hand it in), it has to go in an editor window, not at the IDLE
>>> prompt.

Topic A.3 Computing Accounts

There are several username/password combinations you need for this course.
Hopefully, this will help you keep them straight. All of the accounts have
the same user names, but different passwords.

• SFU Computing Account: This account is the one that all SFU
students (and faculty and staff) get. It is used to retrieve your @sfu.
ca email. All email sent to the course email list will go to this address
(unless you have forwarded it elsewhere). This account is also used for
Caucus, WebCT, and many other computing resources on-campus.

You activate this account, go to my.sfu.ca and click the “Apply for ID”
link. You need to enter your student number and some other personal
information. You should contact the ACS Help Desk for problems with
this account.

@sfu.ca
@sfu.ca
my.sfu.ca

172 APPENDIX A. TECHNICAL INSTRUCTIONS

• Gradebook Account: This account is used to access Gradebook
(http://gradebook.cs.sfu.ca). Gradebook will be used to check your
marks on assignments and exams. Your Gradebook password is also
needed to access some parts of the course web site. Gradebook is gen-
erally activated in the second week of the semester.

This account is also used for the submission server, which is used to
submit your work on assignments.

Your initial password in Gradebook will be your student number (with
no spaces or punctuation). If you have used Gradebook before, you
password will be the same. If you have problems with your password,
the instructor and TAs can reset it to your student number.

• ACS Lab Account: This account is used to access the computers in
any of the ACS labs on campus. You can do your work for this course
in these labs if you wish.

Your password on this account is the same as your SFU Computing
Account. If you have a new account, you should be able to log in with
no problem. If your account is older, you will have to synchronize your
Active Directory password. This is a one time process and can be done
on the web. You can contact the ACS Help Desk for problems with
this account.

More information on using the labs is available from the course web
site.

• CSIL Lab Account: This account is used to access the computers
in the CSIL labs, which are run by the School of Computing Science.
You can do your work for this course in these labs if you wish.

Your password on this account is the same as your SFU Computing
Account. You will need an access card to get in the door; you can get
the access card by the second week of classes at the Security office.

Topic A.4 Working in the Lab

All of the software you need in this course is installed in both the ACS labs
and the CSIL lab. You can access both and can work in either (or on your
own computer is you prefer).

http://gradebook.cs.sfu.ca

A.4. WORKING IN THE LAB 173

See the course web site for more information about using the labs.

Summary

This material will help you learn how to use the software you need to do your
work in this course. You won’t be tested on it.

If there are any updates to this material, they will be posted on the course
web site or sent by email.

Index

==, 58
>>>, 30

in docstrings, 96
#, 69
%, 83
\, 50

algorithm, 20
Algorithms, 123 (unit)
Aliases, 119 (subtopic)
Another Example, 140 (subtopic)
append method, 110
argument, 34

optional, 34
arguments, 90
ASCII, 47
assignment

to an element, 109

base 10 arithmetic, 43
base 2 arithmetic, 43
base case, 134
Binary, 41 (subtopic)
binary, 41, 43
Binary Conversion, 84 (subtopic)
Binary Search, 125 (subtopic)
binary search, 126
bit, 42
body, 56, 57

Boolean Expressions, 58
(subtopic)

boolean expressions, 58
boolean values, 58
bugs, 77
byte, 42

C++, 25
called, 90
Calling Functions, 91 (subtopic)
capacitors, 41
ceiling, 71
character, 46
character set, 47
characters, 30
Characters and Strings, 46

(subtopic)
Choosing Control Structures, 63

(topic)
class, 99
clause

elif, 59
else, 59

cloning, 120
code, 25
Coding Style, 80 (topic)
Combine the Base and Recursive

Cases, 137 (subtopic)
comma-separated value, 149
Comments, 80 (subtopic)

174

INDEX 175

comments, 69
compact disc, 156
computer program, 25
computer programming, 25
computer science, 22
Computing Accounts, 171 (topic)
computing science, 19, 22
Computing Science Basics, 19

(unit)
concatenate, 39, 108
condition, 57
constructor, 99
Control Structures, 55 (unit)
CSV, 149

Data Structures, 21 (subtopic),
107 (unit)

data structures, 21
Debugging, 77 (topic)
Debugging Recursion, 138

(subtopic)
decimal, 43
default value, 34
Defining Functions, 89 (topic)
Defining your own functions, 90

(subtopic)
Definite Iteration: for loops, 59

(topic)
definite loops, 60
defragment, 157
del statement, 110
delete

list element, 110
delimiter, 152
depth

of recursion, 137
Designing with Recursion, 135

(topic)

device drivers, 155
digital camera, 156
disk, 156
disk blocks, 157
Disks and Files, 155 (topic)
docstring, 91, 96
doctest module, 96
documentation string, 91, 96
Doing Calculations, 32 (topic)

element assignment, 109
elif clause, 59
else clause, 59
else clause, 59 (subtopic)
empty string, 51
escaping a character, 51
Example Problem Solving: Feet

and Inches, 48 (topic)
Example Problem Solving: File

Statistics, 158 (topic)
Example Problem Solving:

Guessing Game, 65 (topic)
Example: Repeated letters with

sorting, 128 (subtopic)
exceptions, 102
expression, 32
external fragmentation, 157

factorial, 131
factorials, 60
File Input, 150 (topic)
file object, 148
File Output, 147 (topic)
file system, 156
Find a Base Case, 136 (subtopic)
Find a Smaller Subproblem, 135

(subtopic)
Finding bugs, 79 (subtopic)

176 INDEX

flash media cards, 156
float, 38
floating point, 37
floor, 26
floppy disk, 156
for, 60
for loop, 60 (subtopic)
fragmentation

external, 157
internal, 157

Functions, 34 (subtopic)
functions

arguments, 90
return values, 90

Functions and Decomposition, 89
(unit)

Getting it right the first time, 78
(subtopic)

halting problem, 142
Handling Errors, 102 (topic)
hard drive, 156
How Computers Represent

Information, 41 (topic)
How It Works, 133 (subtopic)
How to sort, 129 (subtopic)

IDLE, 31, 168
if condition, 57
if statement, 56 (subtopic)
immutable, 117
implementation, 25
imports, 97
in-place, 116
Indefinite Iteration: while loops,

62 (topic)
infinite loop, 63
infinite recursion, 137

Installing Python, 167 (topic)
instance, 99
int, 38
integers, 37
interactive interpreter, 30
internal fragmentation, 157
interpreter, 30

Java, 25

len, 34
libraries, 97
Linear Search, 124 (subtopic)
linear search, 124
Lists, 107 (topic)
Lists and for loops, 111 (topic)
Lists are different from strings,

109 (subtopic)
Lists are like strings, 108

(subtopic)
local variable, 94

Making Decisions, 55 (topic)
Manipulating Slices, 114

(subtopic)
mergesort, 130
method, 99
module, 97
More About Algorithms, 84

(topic)
MP3 player, 156
Mutability, 115 (topic)
mutable, 117

NameError, 67, 94
newline character, 148
nonvolatile storage, 156
Number of “Steps”, 76 (subtopic)

Objects, 98 (topic)

INDEX 177

Objects in Python, 99 (subtopic)
opening a file, 148
operating system, 154
operators, 32
optional argument, 34
overflow, 46

Positive and Negative Integers, 44
(subtopic)

print statement, 30
Processing File Input, 151

(subtopic)
Programming Basics, 29 (unit)
programming language, 25
prompt, 30
property, 99
Pseudocode, 26 (topic)
pseudocode, 26
Python, 25, 29

interpreter, 30
Python errors

Name Error, 94
Python Modules, 97 (topic)

quicksort, 130
quotes, 33

printing, 51–52

read head, 157
Really Copying, 120 (subtopic)
Recommended Texts, 12

(subtopic)
Recursion, 131 (topic)
recursion

depth, 137
References, 117 (topic)
Repeated Letters, 72 (subtopic)
return, 90
return statement, 91

return value, 34
round, 34
rstrip string method, 152
Running Time, 70 (topic)

Searching, 123 (topic)
selection sort, 130
sequence types, 114
slicing, 112

manipulating slices, 114
strings, 115

Slicing and Dicing, 112 (topic)
Slicing Strings, 115 (subtopic)
So?, 86 (subtopic)
Sorting, 126 (topic)
Special Slice Positions, 113

(subtopic)
split string method, 152
Starting with Python, 29 (topic)
statement

print, 30
variable assignment, 36

Statements, 31 (subtopic)
Storing Information, 35 (topic)
string, 30, 37, 46

empty, 51
triple-quoted, 52

string subscripting, 72
Strings, 114 (topic)
subscript, 108
Subset Sum, 74 (subtopic)
Summary, 76 (subtopic), 82

(subtopic)

Technical Instructions, 167 (unit)
text editor, 147
text files, 147
The Code Itself, 81 (subtopic)

178 INDEX

The Guessing Game, 70 (subtopic)
The Halting Problem, 142

(subtopic)
The Interpreter vs. the Editor, 31

(subtopic)
The Operating System, 154

(topic)
triple-quoted string, 52
two’s complement notation, 44
Type Conversion, 38 (subtopic)
TypeError, 37
Types, 36 (topic)

Understanding Recursion, 134
(subtopic)

Unicode, 47
unsigned integer, 45
Unsigned Integers, 43 (subtopic)
USB “disks”, 156
Use the Recursive Solution to the

Subproblem, 135
(subtopic)

User Input, 40 (topic)
Using Python, 168 (topic)

variable, 35
variable assignment statement, 36
Variable Scope, 94 (topic)
virus, 144
Virus Checking, 144 (subtopic)

What is an Algorithm?, 19 (topic)
What is Computing Science?, 22

(topic)
What is Programming?, 25 (topic)
What isn’t computable?, 142

(topic)
Why Python?, 25 (subtopic)

Why Use Functions?, 93
(subtopic), 96 (subtopic)

Working in the Lab, 172 (topic)
Working with Files, 147 (unit)

Your first Python program, 169
(subtopic)

	Course Introduction
	Learning Resources
	Requirements
	Evaluation
	About the Author

	I Computer Science and Programming
	Computing Science Basics
	What is an Algorithm?
	What is Computing Science?
	What is Programming?
	Pseudocode
	Summary

	Programming Basics
	Starting with Python
	Doing Calculations
	Storing Information
	Types
	User Input
	How Computers Represent Information
	Example Problem Solving: Feet and Inches
	Summary

	Control Structures
	Making Decisions
	Definite Iteration: for loops
	Indefinite Iteration: while loops
	Choosing Control Structures
	Example Problem Solving: Guessing Game
	Running Time
	Debugging
	Coding Style
	More About Algorithms
	Summary

	Functions and Decomposition
	Defining Functions
	Variable Scope
	Python Modules
	Objects
	Handling Errors
	Summary

	II Problem Solving
	Data Structures
	Lists
	Lists and for loops
	Slicing and Dicing
	Strings
	Mutability
	References
	Summary

	Algorithms
	Searching
	Sorting
	Recursion
	Designing with Recursion
	What isn't computable?
	Summary

	Working with Files
	File Output
	File Input
	The Operating System
	Disks and Files
	Example Problem Solving: File Statistics
	Summary

	III Appendices
	Technical Instructions
	Installing Python
	Using Python
	Computing Accounts
	Working in the Lab
	Summary

