
CMPT 120
Lecture 36 – Practice Exam 10 - SOLUTION

In-Class Activity

• Our in-class activity #10 -> 1%

• Write your answer to questions 1, 2 and 7 on the

provided sheet of paper

• Write your lastname, firstname and student number

• At the end of today’s class, hand in your sheet of

paper in the appropriate pile:

• Pile 1 -> if your lastname start with a letter that is

between ‘A’ and ‘L’

• Pile 1 is on your left-hand side of the classroom

• Pile 2 -> if your lastname start with a letter that is

between ‘M’ to letter ‘Z’

• Pile 2 is on your right-hand side of the classroom

Course grading
scheme on our course
website: Best 7 in-class

exercises out of 10: 1%
each, for a total of 7%

2

Theory and
Understanding

3

Try to answer the

questions 1st without

using your computer,
then confirm your

answer using IDLE!

How to analyze complexity

1. Count the number of times a critical operation is

executed

• Usually seen in a loop

• Express this number as a function of n (number of
elements) 0-> use

Standard Refence functions:

2. Disregard constants

3. Disregard lower exponent

terms (e.g., n when both n2

and n are present).

4

Calculating Time Complexity
– Example 1
• Critical operations

depending on n?

• How many additions are executed?

• n + n = 2n

(for loop at lines 2 and 3 repeated n times THEN for

loop at lines 4 and 5 repeated n times)

• So, what is the order of this code fragment (its

time complexity/efficiency)?

• O(2n) -> 2 * O(n) -> O(n)

• Can discard the factor “2”

5

Calculating Time Complexity
– Question 1

6

• Critical operations
depending on n?
• Answer: Additions

as well as assignments

@ lines 5 and 6

• How many addition/assignments are executed?
• Answer: 1 addition and 1 assignment executed at each

iteration of the loop

• There are n iterations of the loop, i.e., lines 5 and 6 repeated
n times

• Answer: 2 * n

• So, what is the order of this code fragment (its time
complexity/efficiency)?
• Answer: 2 * n = 2n and since 2 is a constant (also a factor),

we discard it and get n which matches reference function n
☺. Then, we express this function using the big O notation:
O(n)

Calculating Time Complexity
– Example 2
• Critical operations

depending on n?

• How many addition/assignments are executed?

• (n + n) * n = 2n * n = 2n2

(for loop at lines 3 and 4 repeated n times in 1st j loop THEN for
loop at lines 5 and 6 repeated n times in 2nd j loop, both loops
repeated n times in outer for loop)

• So, what is the order of this code fragment (its time
complexity/efficiency)?

• O(2n2) -> 2 * O(n2) -> O(n2)

• Can discard the factor “2”

7

Calculating Time Complexity
– Question 2
• Critical operations

depending on n?
• Answer: Additions

as well as assignments

@ line 4

• How many addition/assignments are executed?
• Answer: 1 addition and 1 assignment executed at

each iteration of the inner loop

• There are n iterations of the inner loop

• Then these n iterations are done at every iteration of
the outer loop and there are n iterations of the outer
loop

• Answer: (2 * n)n = 2n2

• So, what is the order of this code fragment (its time
complexity/efficiency)?
• Answer: Discarding 2, we get n2 which matches

reference function n2
☺. Lastly, we express this

function using the big O notation: O(n2)

8

Question 3 - Matching

1. The statement that calls an
already executing function.

2. A definition which defines
something in terms of itself. To
be useful it must include base
cases which are not recursive.

3. A branch of the conditional
statement in a recursive
function that does not give
rise to further recursive calls.

4. A function that calls itself
recursively without ever
reaching the base case.

5. The process of calling the
function that is already
executing.

9

a. base case

b. recursion

c. recursive call

d. recursive definition

e. infinite recursion

Match each statement on the left with the most

appropriate word(s) on the right.

Question 4 - Binary
1. How many distinct numbers can I represent with …

a) 1 bit? 2 What are these numbers? 0 and 1

b) 4 bits? 24 = 16 What are these numbers (in binary)?

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1110, 1111

2. How many distinct numbers can I represent with 7

bits? 27 = 128

These numbers range from __0__ to __127__

3. How many distinct numbers can I represent with 1

byte? 1 byte = 8 bits so 28 = 256

These numbers range from __0__ to __255__

4. How many distinct numbers can I represent with 32

bits? 232 = 4,294,967,296

These numbers range from __0__ to _4,294,967,295_

10

Question 5 - Conversion

1. Convert 10011011 into an integer (decimal number):

1 x 27 + 1 x 24 + 1 x 23 + 1 x 21 + 1 x 20 = 128+16+8+2+1 = 155

2. a) What is the binary equivalent of 57?

57 – 32 = 25 – 16 = 9 – 8 = 1 – 1 = 0 => 00111001

25 24 23 20

b) What is the binary equivalent of 157?

157 – 128 = 29 – 16 = 13 – 8 = 5 – 4 = 1 – 1 = 0 => 10011101

27 24 23 22 20 11

Question 6

• In class, we learned a Selection sort algorithm that swapped

the smallest number in a list with the first element @ index 0.

Selection sort can also be implemented by selecting the

largest number in the list, and swapping it with the last element

@ index “len(list)-1”.

• Using this updated algorithm, suppose you have the

following list of numbers to sort:

[11, 7, 12, 14, 19, 1, 6, 18, 8, 20]
Which list below represents the partially sorted list after three

complete iterations of Selection sort?

a. [7, 11, 12, 1, 6, 14, 8, 18, 19, 20]

b. [7, 11, 12, 14, 19, 1, 6, 18, 8, 20]

c. [11, 7, 12, 14, 1, 6, 8, 18, 19, 20]

d. [11, 7, 12, 14, 8, 1, 6, 18, 19, 20]

e. None of the above

12

Question 7

• Assume that a problem can be solved with two
different algorithms, Algorithm A and Algorithm B,
and you need to decide which algorithm to
implement based on their time complexity.

• Algorithm A has a time complexity of O(n).

• Algorithm B has a time complexity of O(n log2 n).

• Which algorithm (Algorithm A or Algorithm B) would
you choose, if you had a very large dataset, i.e., if n
was very large?

• Answer: I would choose Algorithm A with time
complexity of O(n) as it is “faster” (i.e., more time
efficient) than Algorithm B

13

14

Question 8 – Test Cases

If we wanted to completely test this Python code fragment, how many test cases would we need, i.e.,

how many different width values must we enter? Note that we are looking at the minimum number

of test cases.

What do we mean by “completely”? We mean that each of our test cases will execute a section of the

program, such that all of our test cases will execute all statements in our program at least once.

width = int(input("Please, enter a width: "))

if width > 0 :

 if width > 10:

 if width % 2 == 0 :

 # then do something with width

 else :

 print(f"width {width} is not even.")

 else:

 print(f"0 < width {width} <= 10.")

else:

 print("width <= 0.")

A. 4

B. 2

C. 1

D. 5

E. There are no test cases that could completely test the Python code fragment above.

15

Question 8 – Test Cases

If we wanted to completely test this Python code fragment, how many test cases would we need, i.e.,

how many different width values must we enter? Note that we are looking at the minimum number

of test cases.

What do we mean by “completely”? We mean that each of our test cases will execute a section of the

program, such that all of our test cases will execute all statements in our program at least once.

width = int(input("Please, enter a width: "))

if width > 0 :

 if width > 10:

 if width % 2 == 0 :

 # then do something with width

 else :

 print(f"width {width} is not even.")

 else:

 print(f"0 < width {width} <= 10.")

else:

 print("width <= 0.")

A. 4

B. 2

C. 1

D. 5

E. There are no test cases that could completely test the Python code fragment above.

Test case 1: width = 20

True

True
True

Always executed!

16

Question 8 – Test Cases

If we wanted to completely test this Python code fragment, how many test cases would we need, i.e.,

how many different width values must we enter? Note that we are looking at the minimum number

of test cases.

What do we mean by “completely”? We mean that each of our test cases will execute a section of the

program, such that all of our test cases will execute all statements in our program at least once.

width = int(input("Please, enter a width: "))

if width > 0 :

 if width > 10:

 if width % 2 == 0 :

 # then do something with width

 else :

 print(f"width {width} is not even.")

 else:

 print(f"0 < width {width} <= 10.")

else:

 print("width <= 0.")

A. 4

B. 2

C. 1

D. 5

E. There are no test cases that could completely test the Python code fragment above.

Test case 2: width = 21
False

True
True

Always executed!

17

Question 8 – Test Cases

If we wanted to completely test this Python code fragment, how many test cases would we need, i.e.,

how many different width values must we enter? Note that we are looking at the minimum number

of test cases.

What do we mean by “completely”? We mean that each of our test cases will execute a section of the

program, such that all of our test cases will execute all statements in our program at least once.

width = int(input("Please, enter a width: "))

if width > 0 :

 if width > 10:

 if width % 2 == 0 :

 # then do something with width

 else :

 print(f"width {width} is not even.")

 else:

 print(f"0 < width {width} <= 10.")

else:

 print("width <= 0.")

A. 4

B. 2

C. 1

D. 5

E. There are no test cases that could completely test the Python code fragment above.

Test case 3: width = 9False
True

Always executed!

18

Question 8 – Test Cases

If we wanted to completely test this Python code fragment, how many test cases would we need, i.e.,

how many different width values must we enter? Note that we are looking at the minimum number

of test cases.

What do we mean by “completely”? We mean that each of our test cases will execute a section of the

program, such that all of our test cases will execute all statements in our program at least once.

width = int(input("Please, enter a width: "))

if width > 0 :

 if width > 10:

 if width % 2 == 0 :

 # then do something with width

 else :

 print(f"width {width} is not even.")

 else:

 print(f"0 < width {width} <= 10.")

else:

 print("width <= 0.")

A. 4

B. 2

C. 1

D. 5

E. There are no test cases that could completely test the Python code fragment above.

Test case 4: width = -3

False
Always executed!

19

Question 8 – Test Cases

If we wanted to completely test this Python code fragment, how many test cases would we need, i.e.,

how many different width values must we enter? Note that we are looking at the minimum number

of test cases.

What do we mean by “completely”? We mean that each of our test cases will execute a section of the

program, such that all of our test cases will execute all statements in our program at least once.

width = int(input("Please, enter a width: "))

if width > 0 :

 if width > 10:

 if width % 2 == 0 :

 # then do something with width

 else :

 print(f"width {width} is not even.")

 else:

 print(f"0 < width {width} <= 10.")

else:

 print("width <= 0.")

A. 4

B. 2

C. 1

D. 5

E. There are no test cases that could completely test the Python code fragment above.

Test case 5: width = 0

False
Always executed!

A 5th test case could be width = 0, but this 5th test case would execute the
same statements as the statements executed by test case 4 as illustrated
on the previous slide! Verify for yourself! And since we are looking for the
minimum number of test cases, then 4 test cases is the answer!

Question 9

• Translate the following message:

01000111 01101111 01101111 01100100

00100000 01101100 01110101 01100011

01101011 00100000 01101001 01101110

00100000 01111001 01101111 01110101

01110010 00100000 01100110 01101001

01101110 01100001 01101100 00100000

01100101 01111000 01100001 01101101

01110011 00100001 0001010

• Answer: Good luck in your final exams!

20

Question 10 – List Comprehension

1. What would this code fragment produce?

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

2. What would this code fragment produce?

21

[['*', '*', '*', '*'], ['*', '*', '*', '*'], ['*', '*', '*', '*'], ['*', '*', '*', '*']]

Question 10 (cont’d)

3. Rewrite the code fragment below into a for loop

such that both code fragments (the one below

and your loop) produce the same result.

22

Question 10 (cont’d)

4. Rewrite the code fragment below into for loops

such that both code fragments (the one below

and your loops) produce the same result.

23

Coding
24

Try to solve the problem

(i.e., write your Python
program) 1st on a piece

of paper without using
your computer!

Question 1 - Searching

Step 1 - Problem Statement

• Given a list of integers and a target, write a

search function that will return a list containing all

the indices where the target can be found in the

list. If it cannot be found, return an empty list.

Requirements

• Your solution must use the append function.

Step 4 – Testing

• You must write at least 3 test cases.
25

Question 2 - Vowel Counter

Step 1 - Problem Statement

• Write a function called
countVowels(aString,vowelCount) that

returns the number of vowels in the string
aString using recursion.

26

Question 3 - Conversion

Step 1 - Problem Statement

Write a function that converts a given binary

number (entered as a string) into a decimal

number and returns it.

27

Question 4 - Conversion

Step 1 - Problem Statement

Write a function that converts a given decimal

number (entered as an integer) into a binary

number and returns it.

28

