CMPT 120

Lecture 35 — Internet and Big Data

Algorithm — Complexity Analysis of
Searching and Sorting Algorithms




Admin Blurb

Announcements

+ Office hours for Week 14 - Monday April 15 to Friday April 19 - in the usual locations:
o Monday April 15 - Anne - 2pm to 3:30pm
o Tuesday April 16 - Arsh - 11:30am to 1:30pm
o Tuesday April 16 - Rohan - 1:30am to 3:30pm
o Wed. April 17 - Arsh - 1:30pm to 2:30pm
o Wed. April 17 - Rohan - 2pm to 3pm
o Wed. April 17 - Anne - 2:30pm to 4pm
o Thursday April 18 - Sitong - 8:30am to 11:30am
o Friday April 19 - Christian - 10am to 3pm
o Friday April 19 - Anne - 3pm to 4:30pm

+ Make sure you have a fixed copy of maze_1.txt by downloading maze_1.txt again.

« Turtle Maze Calculation set of slides (seen in Monday's lecture) has now been posted!
These slides provided some help with the function coordinateToMazePosition(x, y, cellSize = 20).

« Deadline is Wed. April 10. If you have questions regarding the marking of your Assignment 1 to Assignment 3

and regarding your midterm, make sure you bring your questions to the instructor and/or the TAs by Wed. April 2 J
10. We shall not be attendina to such questions bevond this deadline!




[Last Lecture

« We had alook at Merge sort

« We started intfroducing Complexity Analysis and
the Big O Notation




Review - Complexity Analysis

e To compare algorithms, one analyzes the complexity of the
algorithms, i.e., one considers the amount of resources these
algorithms required to perform the same task

e The result of this complexity analysis is called the Order of an
algorithm (or their fime and space complexity/efficiency)

To perform Complexity Analysis, i.e., to figure out the
order of an algorithm, one counts the number of
operations: comparisons

And since the larger the list is, the more operations may
be required -> correlation between # of operations and n

Order of an algorithm is expressed as a function of n

We express this function of n by using the Big-O notation ( ¢ J



Today’s Menu

* We shall analyze our searching algorithms and
figure out which is fastere

. or Binary search

* We shall analyze our sorting algorithms and
figure out which is faster?

 Selection sort or Merge sort




Time Complexity of Binary Searc

- How many times do we compare target with element
in the middle?

 How many times do we divide n by 2 until we can’t
divide anymore (sublists have 1 element)?

For example:

\ 2292 92 3
log_n

If nis 8, we divided
3 times ->log, 8 =3

@@@@@@@@/

Worst case scenarios:

« Target is either found in a sublist of T element or not found
-> O(log, n)




Time Complexity of Selection Sor
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Time Complexity of Selection Sor
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Time Complexity of Selection Sor

lferation #8
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» The total number of comparisons is:
=n-1+n2+n3+..+1

““““ Selection sort is quadratic, O(n3).
° This is true for both the best and
worst case (why?)




Space Complexity of Selection So

» Because Selection sort is an in-place algorithm
>->0(1)




Time Complexity of Merge Sort

Like Binary search, B|27|43[3[9]8210

we divide log, n . |
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elements, i.e., n - ¥

comparisons, at BEERARR
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Worst case scenarios:
* n comparisons done at each of the log, n levels
=n*log,n ->0(nlog, n)




Space Complexity of Merge Sort

» Because extra space is needed to create the
merged lists at each level, Merge sort has a space
efficiency of O(n)

 This may be problematic for large n




Conclusion

When we analyze the complexity of algorithms, we
consider the algorithm’s worst case scenario
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What happens when n gets
larger?

- When we analyse the complexity of an algorithm,
we look at the time/space it requires to execute “as
n goes to infinity”

n Ex: Get first Ex: Linear Ex: Selection | Ex: Binary
elementin list | search sort search
O(1) O(n) O(n?) O(log n)

Always constant

10 1 10 100 Sis

100 1 100 10,000 6.64

1000 1 1000 1,000,000 9.96

10000 1 10000 100,000,000 |13.28




Last Lecture - Wow!

* Practice Exam 10 + in-class activity #10




