
CMPT 120
Lecture 35 – Internet and Big Data

Algorithm – Complexity Analysis of

Searching and Sorting Algorithms

Admin Blurb

2

Last Lecture
● We had a look at Merge sort

● We started introducing Complexity Analysis and

the Big O Notation

3

Review - Complexity Analysis

● To compare algorithms, one analyzes the complexity of the

algorithms, i.e., one considers the amount of resources these

algorithms required to perform the same task

● The result of this complexity analysis is called the Order of an

algorithm (or their time and space complexity/efficiency)

● To perform Complexity Analysis, i.e., to figure out the

order of an algorithm, one counts the number of

operations: comparisons

● And since the larger the list is, the more operations may

be required -> correlation between # of operations and n

● Order of an algorithm is expressed as a function of n

● We express this function of n by using the Big-O notation
4

Today’s Menu

• We shall analyze our searching algorithms and

figure out which is faster?

• Linear search or Binary search

• We shall analyze our sorting algorithms and

figure out which is faster?

• Selection sort or Merge sort

5

Time Complexity of Binary Search
• How many times do we compare target with element

in the middle?

• How many times do we divide n by 2 until we can’t
divide anymore (sublists have 1 element)?

6

If n is 8, we divided

3 times -> log2 8 = 3

Worst case scenarios:

• Target is either found in a sublist of 1 element or not found
-> O(log2 n)

compare

compare

compare

compare

Time Complexity of Selection Sort

7

n-1 -> 9 comparisons

n = 10

Iteration #1

Iteration #2

n-2 -> 8 comparisons

Iteration #3

n-3 -> 7 comparisons

Time Complexity of Selection Sort

8

Iteration #4

Iteration #5

Iteration #6

Iteration #7

Time Complexity of Selection Sort

9

1 comparison

Iteration #9

Iteration #n-1

All sorted! ☺

Iteration #8

• The total number of comparisons is:

= n-1 + n-2 + n-3 + … + 1

Space Complexity of Selection Sort

• Because Selection sort is an in-place algorithm

-> -> O(1)

10

Time Complexity of Merge Sort
1. Like Binary search,

we divide log2 n

times producing

log2 n levels

2. In order to perform

the Merge operation

and sort all elements,

we end up

comparing all

elements, i.e., n

comparisons, at

each of the level.

11Worst case scenarios:

• n comparisons done at each of the log2 n levels

= n * log2 n -> O(n log2 n)

Space Complexity of Merge Sort

• Because extra space is needed to create the

merged lists at each level, Merge sort has a space

efficiency of O(n)

• This may be problematic for large n

12

Conclusion
When we analyze the complexity of algorithms, we
consider the algorithm’s worst case scenario

Time Efficiency

Linear search -> O(n)

Binary search ->O(log2 n)

Selection sort -> O(n2)

Merge sort ->O(n log2 n)

13

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Number of elements -> n

So, which search

algorithm is faster?

And which sort

algorithm is faster?

What happens when n gets
larger?
• When we analyse the complexity of an algorithm,

we look at the time/space it requires to execute “as

n goes to infinity”

14

n

Last Lecture – Wow!

• Practice Exam 10 + in-class activity #10

15

