CMPT 120

Lecture 35 – Internet and Big Data Algorithm – Complexity Analysis of Searching and Sorting Algorithms

Admin Blurb

Announcements

- Office hours for Week 14 Monday April 15 to Friday April 19 in the usual locations:
 - Monday April 15 Anne 2pm to 3:30pm
 - Tuesday April 16 Arsh 11:30am to 1:30pm
 - Tuesday April 16 Rohan 1:30am to 3:30pm
 - Wed. April 17 Arsh 1:30pm to 2:30pm
 - Wed. April 17 Rohan 2pm to 3pm
 - Wed. April 17 Anne 2:30pm to 4pm
 - Thursday April 18 Sitong 8:30am to 11:30am
 - Friday April 19 Christian 10am to 3pm
 - Friday April 19 Anne 3pm to 4:30pm
- Make sure you have a fixed copy of maze_1.txt by downloading maze_1.txt again.
- Turtle Maze Calculation set of slides (seen in Monday's lecture) has now been posted! These slides provided some help with the function coordinateToMazePosition(x, y, cellSize = 20).
- Deadline is Wed. April 10. If you have questions regarding the marking of your Assignment 1 to Assignment 3 and regarding your midterm, make sure you bring your questions to the instructor and/or the TAs by Wed. April 10. We shall not be attending to such questions beyond this deadline!

Last Lecture

- We had a look at Merge sort
- We started introducing Complexity Analysis and the Big O Notation

Review - Complexity Analysis

- To compare algorithms, one analyzes the complexity of the algorithms, i.e., one considers the amount of resources these algorithms required to perform the same task
- The result of this complexity analysis is called the Order of an algorithm (or their time and space complexity/efficiency)
 - To perform **Complexity Analysis**, i.e., to figure out the order of an algorithm, one counts the **number of operations: comparisons**
 - And since the larger the list is, the more operations may be required -> correlation between # of operations and n
 - Order of an algorithm is expressed as a function of n
 - We express this function of n by using the Big-O notation

Today's Menu

- We shall analyze our searching algorithms and figure out which is faster?
 - Linear search or Binary search
- We shall analyze our sorting algorithms and figure out which is faster?
 - Selection sort or Merge sort

Time Complexity of Binary Search

- How many times do we compare target with element in the middle?
 - How many times do we divide n by 2 until we can't divide anymore (sublists have 1 element)?

Worst case scenarios:

 Target is either found in a sublist of 1 element or not found -> O(log₂ n)

Time Complexity of Selection Sort

Time Complexity of Selection Sort

8

Time Complexity of Selection Sort

• The total number of comparisons is:

= **n**-1 + **n**-2 + **n**-3 + ... + 1

= n (n - 1)

Selection sort is **quadratic**, **O**(**n**²). This is true for both the **best** and **worst case (why?)**

Space Complexity of Selection Sor

Because Selection sort is an in-place algorithm
-> -> O(1)

Time Complexity of Merge Sort

- Like Binary search, we divide log₂ n times producing log₂ n levels
- 2. In order to perform the Merge operation and sort all elements, we end up comparing all elements, i.e., **n** comparisons, at each of the level.

Worst case scenarios:

n comparisons done at each of the log₂ n levels
= n * log₂ n -> O(n log₂ n)

Space Complexity of Merge Sort

- Because extra space is needed to create the merged lists at each level, Merge sort has a space efficiency of O(n)
- This may be problematic for large n

Conclusion

When we analyze the complexity of algorithms, we consider the algorithm's **worst case scenario**

Time Efficiency Linear search -> O(n) Binary search ->O(log₂ n) Selection sort -> O(n²) Merge sort ->O(n log₂ n)

So, which **search** algorithm is faster? And which **sort** algorithm is faster?

https://en.wikipedia.org/wiki/Big_O_notation

3

What happens when n gets larger?

 When we analyse the complexity of an algorithm, we look at the time/space it requires to execute "as n goes to infinity"

n	Ex: Get first element in list O(1) Always constant	Ex: Linear search O(n)	Ex: Selection sort O(n²)	Ex: Binary search O(log n)
10	1	10	100	3.32
100	1	100	10,000	6.64
1000	1	1000	1,000,000	9.96
10000	1	10000	100,000,000	13.28

Last Lecture – Wow!

• Practice Exam 10 + in-class activity #10

5