CMPT 120

Lecture 35 — Internet and Big Data

Algorithm — Complexity Analysis of
Searching and Sorting Algorithms

Admin Blurb

Announcements

+ Office hours for Week 14 - Monday April 15 to Friday April 19 - in the usual locations:
o Monday April 15 - Anne - 2pm to 3:30pm
o Tuesday April 16 - Arsh - 11:30am to 1:30pm
o Tuesday April 16 - Rohan - 1:30am to 3:30pm
o Wed. April 17 - Arsh - 1:30pm to 2:30pm
o Wed. April 17 - Rohan - 2pm to 3pm
o Wed. April 17 - Anne - 2:30pm to 4pm
o Thursday April 18 - Sitong - 8:30am to 11:30am
o Friday April 19 - Christian - 10am to 3pm
o Friday April 19 - Anne - 3pm to 4:30pm

+ Make sure you have a fixed copy of maze_1.txt by downloading maze_1.txt again.

« Turtle Maze Calculation set of slides (seen in Monday's lecture) has now been posted!
These slides provided some help with the function coordinateToMazePosition(x, y, cellSize = 20).

« Deadline is Wed. April 10. If you have questions regarding the marking of your Assignment 1 to Assignment 3

and regarding your midterm, make sure you bring your questions to the instructor and/or the TAs by Wed. April 2 J
10. We shall not be attendina to such questions bevond this deadline!

[Last Lecture

« We had alook at Merge sort

« We started intfroducing Complexity Analysis and
the Big O Notation

Review - Complexity Analysis

e To compare algorithms, one analyzes the complexity of the
algorithms, i.e., one considers the amount of resources these
algorithms required to perform the same task

e The result of this complexity analysis is called the Order of an
algorithm (or their fime and space complexity/efficiency)

To perform Complexity Analysis, i.e., to figure out the
order of an algorithm, one counts the number of
operations: comparisons

And since the larger the list is, the more operations may
be required -> correlation between # of operations and n

Order of an algorithm is expressed as a function of n

We express this function of n by using the Big-O notation (¢ J

Today’s Menu

* We shall analyze our searching algorithms and
figure out which is fastere

. or Binary search

* We shall analyze our sorting algorithms and
figure out which is faster?

 Selection sort or Merge sort

Time Complexity of Binary Searc

- How many times do we compare target with element
in the middle?

 How many times do we divide n by 2 until we can’t
divide anymore (sublists have 1 element)?

For example:

\ 2292 92 3
log_n

If nis 8, we divided
3 times ->log, 8 =3

@@@@@@@@/

Worst case scenarios:

« Target is either found in a sublist of T element or not found
-> O(log, n)

Time Complexity of Selection Sor

n=10

lteration #1

—
7 5 5 7
15 35 26 34 18 50 19 14 3 26 34 18 50 15 19 14
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8B 9
\ J
Y .
n-1->9 comparisons
Iteration #2
—
5 7 5 7
35 26 34 18 50 15 19 14 26 34 18 50 35 15 19 14
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Y .
n-2 -> 8 comparisons
Iteration #3
—
5 7 5
26 34 18 50 35 15 10 14 14,34 18 50 35 15 19 26
0 1 2 3 4 5 8 7 8 9 61+ 2 3 4 5 6 7 8 9

N Y,
Y ,
n-3 -> 7/ comparisons

Time Complexity of Selection Sor

lteration #4

5 7 5 7
14 34 18 50 35 15 19 26 14 15 18 50 35 34 19 26
0 1 2 3 4 5 6 7 8 9 0 1 2 2 4 5 6 7 8 9

lferation #5

14 15 18 50 35 34 19 26 14 15 18 50 35 34 19 26
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

lteration #6

14 15 18 50 35 34 19 26 14 15 18 19 35 34 50 26
0 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

ltferation #7
5 7 = 7

MG INISN IR S (35 (1341 [1507 [26 14 15 18 19 26 34 50 35
b 1 2 2 4 § &6 7 & 8 o 1 2 3 4 5 6 7 8 9

Time Complexity of Selection Sor

lferation #8

5 T 5 T

am AR - S
Iteration #9
lteration #n-1 , - — . 7

14 (15 18 19 26 34 50 35 14 15 18 19 26 34 35 50
0 1 2 &) 4 &) 6 ?\8(9/ 0 1 2 3 4 15 6 7 8 9
1 comparison All sorted! ©

» The total number of comparisons is:
=n-1+n2+n3+..+1

““““ Selection sort is quadratic, O(n3).
° This is true for both the best and
worst case (why?)

Space Complexity of Selection So

» Because Selection sort is an in-place algorithm
>->0(1)

Time Complexity of Merge Sort

Like Binary search, B|27|43[3[9]8210

we divide log, n . |

. . , AT S

times producing 38|27]43]3| |9e|10]

log, n levels ol g

In order to perform s 271 el B o i 0

the Merge operation % 3 % 1% "

and sort all elements, | 7 43 3 u 82 10

we end up .Y ' \ ¥ :

compdring all 27 33| 3|43 9|82 10
. . ‘ .

elements, i.e., n - ¥

comparisons, at BEERARR

each of the level. .

3‘9 10|27 38|43 82
* (1)

Worst case scenarios:
* n comparisons done at each of the log, n levels
=n*log,n ->0(nlog, n)

Space Complexity of Merge Sort

» Because extra space is needed to create the
merged lists at each level, Merge sort has a space
efficiency of O(n)

 This may be problematic for large n

Conclusion

When we analyze the complexity of algorithms, we
consider the algorithm’s worst case scenario

;-{
Time Efficiency -tz . -
8 17
_> O(n) 8 90 Elll' ///
Binary search ->O(log, n) % = 1]
° o 70 i ./b/
Selection sort -> O(n?) o
il //
Merge sort ->O(n log, n) % o) i B’
o 40 ’,’ s
8 30 | _//
‘- . c ¥
S0, which search S 2o/ |
algorithm is faster? Z 10|l e
: T TR T | Togan| @
And which sort O0 10 20 30 40 50 60 70 80 90 100
Kolgon’rhm s fastere Number of elements -> n
https:~Zenwikipedia.org/wiki/Big_O_notation

What happens when n gets
larger?

- When we analyse the complexity of an algorithm,
we look at the time/space it requires to execute “as
n goes to infinity”

n Ex: Get first Ex: Linear Ex: Selection | Ex: Binary
elementin list | search sort search
O(1) O(n) O(n?) O(log n)

Always constant

10 1 10 100 Sis

100 1 100 10,000 6.64

1000 1 1000 1,000,000 9.96

10000 1 10000 100,000,000 |13.28

Last Lecture - Wow!

* Practice Exam 10 + in-class activity #10

