CMPT 120

Lecture 32 — Internet and Big Data
Algorithm - Searching

[Last Lecture

« We continued looking under the hood,
continued having a close look at the computer
memory!

« We learnt how to convert binary numbers into

decimal numbers and decimal numlbers into binary
numbers

* We learnt how to convert binary numbers into ASCI
characters and given the ASCII table, we certainty
could convert ASCIlI characters into binary numbers
(and decimal numbers)

* We learnt why 255 meant full on green (or red or
blue)

- We learnt what Kb, Mb, Gb, etc. (as well as KB, MB, (5 J
GB, TB) stood for

Review: -

read this [HREIRRENE]

This bit is worth
s,

ofl1jfoflol[1|[1follo]| >TXx2%+1x23+ 1 x?22

=64+ 8+4
This bit is worth: This bif is worth: This bit is worth: — 76
128 =27/ 16 =24 1=20
-

This bif is worth:
This bit is Worﬂq 4 =92

Binary numerall
system

01001100

J

64 = 26

[}
° Decimal numeral
eVI1ieEWw. system
\ Binary numeral
system

1 00000001 | 9 00001001
2 00000010 10 00001010 /Thevolueofeoch
3 00000011 | 11 00001011 | “feRscoiour
4 00000100 | 12 00001100 | ‘singabis (1 byie)
5 00000101 | 13 00001101 | " “Gepth
6 00000110 | 14 00001110 | representing our
7 00000111 | 15 00001111 | "aeomotosim
8 00001000 | 31 00011111 | oxmosite monsiy of
64 01000000 | 1o inemiyore ond
(" Why dofes”255 255 11111111 | el o expresine
medans 1uii on largest volue_ we can
green or red or 256 100000000 (mect i
\ blue? ie., 255,and the

\ smallest value is 0.

Decimal numerdl
system

Review: A

Binary numeral
system

Remember:

128 || 64 || 32 16 8 4 2 1

106 — 128 = nop! 128 does not fit in 106
106 — 64 = 42
42-32=10
10-16 = nop! 16 does not fitin 10

10-8=2
2-4= nopl 4 does not fitin 2
011 1 O (|1

2
\ \1$) 1 does not fitin O
i.e., 128 l.e. 64

does nO-I- does eTC ...
fitin 106 fitin 106

Homework

Seagate Portable 2TB External Hard
Drive Portable HDD — USB 3.0 for PC,
Mac, PS4, & Xbox - 1-Year Rescue
Service (STGX2000400), Black

Visit the Seagate Store
46 Wiy 246,061 ratings

in External Hard Drives
$9799

Binary decoder?

Step 1 - Problem Statement

Write a binary to decimal decode program
that converts the binary number the user
enters.

Step 2 - Design

Today’s Menu

A LOT of
datal
The Internet and Big Data *

 Internet browsers like Google must be able 1o
search through billions of web pages very efficiently

* In this unit, we shall learn various algorithms that
allow us, and Google, to search and sort through
lots data and we shall learn to compute how fast
(time efficient) these algorithms are

- Today, we shall learn a few searching algorithms
search
Binary search (g J

Where is search used?

- Google

« Domain name system
(DNS) servers

* Music databases

- Amazon customer
databases

... everywherel

DNS Lookup

Because there is a large
amount of data out DNS: Domain Name System
There SeC"'Ching needs 1.0 Example of addresses for the sfu.ca

domain
be done especially fast!

https://db-ip.com/all/142.58.27#:~:text=142.58.,Fraser%20University%20%2D%20Search%20IP%20addresses

Anything in |5
size 92 [i8

Searchig

First, the basic algorithm: Linear Search

Let’s try!
s in this sequence?

Called
“target”

42 8 12 34 2 67 33 26 89 54

Our reading calls it The Sequential Search!

What did we do to find the
target?

Linear Search - Take 1

Step 1 - Problem Statement

Given a list of numbers (e.g. of shoe sizes) and @
target number we are looking for in the given
list, can we write a function that returns True if
the tfarget number is in the given list of numbers,
otherwise, it returns False<¢

Requirements:

We cannot use a Python conditional statement
suchasif x in list: Canyou see whye

Step 2 - Design
Step 3 - Implementation
Let’s start coding!

We are
expecting:

testDatal
testData?2
testData3 = []

linearSearchBool (testDatal,
linearSearchBool (testDatal,
linearSearchBool (testDatal,
linearSearchBool (testDataz2,
linearSearchBool (testDataz2,

linearSearchBool (testDataz2,

e e’ '’ N N N

linearSearchBool (testData3,

Observations

Reminder: Generalisation
guideline and testing

- When we design algorithms, programs and
functions, we want to make sure they solve as
many similar problems as possible, i.e., they
work with as many different data configurations
as possible

-> generalisation guideline

» Therefore, we shall test our algorithms, programs
and functions accordingly:
« For example: Does our linear search algorithm work
successfully with ...
An empty liste A sorted liste
An list containing the same element?
A list containing the target number once?¢
A list containing the target number several times, etc...

[16])

Linear Search - Take 2

Step 1 - Problem Statement

Given a list of numbers (e.g. of shoe sizes) and @

target number we are looking for in the given list,
can we write a function that returns the location
of the target number in the given list of numbers,
e.q., its index, otherwise it returns None<¢

Requirements:

We cannot use a Python conditional statement
suchasif x in list:

Step 2 - Design
Step 3 - Implementation
Let’s start coding!

Linear search algorithm

« Advantages
» Simple to understand, implement and test

- Disadvantages

 Slow (time inefficient) because it looks at
every element

That is truel
We'll come

back to this

. ‘ ‘ | |
Wait a minute! Not alwaysl! a6l o

We saw that for some of
our test cases linear search
did not look at every element

linear search?

* Linear search could be quick if the target
element we are looking for is the first element in
our data:

42 8 12 34 2 67 33 26 89 54

« or it could be slow if the target element we are
looking for is the last element in our data:

42 8 12 34 2 67 33 26 89 54

« Conclusion:
Sometimes linear search is time efficient
and sometimes, it isn’1! [19]

Various scenarios

« Best case scenario
ourList = [0, o6, 9, 2, 5, 3, 7, 1, 4]
target:

« Average case scenario
ourList = [0, o, 9, 2, 5, 3, 7, 1, 4]
target:

- Worst case scenario
ourlist = [O, o6, 9, 2, 5, 3, 7, 1, 4]
target:

Data organization vs.
Searching

* Would the way we organize our data (e.g.,
data in order, not in order) affect the time it
takes to find a target element in a sequence®

- What if we were to sort our data?

* Would this affect the time efficiency of linear
searche

Various scenarios

« Best case scenario
ourlist = [O, 1, 2, 3, 4, 5, o, 7, 9]
target:

« Average case scenario
ourlist = [O, 1, 2, 3, 4, 5, o, 7, 9]
target:

- Worst case scenario
ourList = [O, 1, 2, 3, 4, 5, 6, 7, 9]
target:

Consider ...

« Consider our vinyl collection. How could we
organize our LPs to make searching through them
fastere

« Although it will take some time to do the inifial
sorfing (we will see in our next lectures), a sorted
sequence of elements will make looking for an
target element much quicker later, every single
time.

How Binary Search works!

Searching for target element 17 and return True if

found in this sequence:
21| 8|14|17|23| 20 |37|74|75|81|87]95

Iteration #1:
1. Find middle element of sequence:

2 |-1 (8 |14 17|23 = 37 | 74 |75 | 81 | 87 | 95

—

2. Compare middle element 29 with target element 17
3. Because 17 <29, we can ignore the 29 half of array:

g1/ 5] (24)

2 -1| 8 | 14|17 | 23 /,2”9/ 57 /14 /.75//{&1“'1,"";3

How Binary Search works!

Iteration #2:
1. Find middle element of the remaining sequence:

2|8 1a]17]23ANBY Vi VENA NS/ 5]

2. Compare middle element 8 with target element 17
3. Because 17 > 8, we can ignore half of array:

LY/ 14| 7 | 232/ 7 VA VENA N3 [95/

How Binary Search works!

Iteration #3:
1. Find middle element of the remaining sequence:

A/ /] 14 |17] 23 [/157 VoA Vg VA 37 [95/

2. Compare middle element 17 with target element 17
3. Because 17 == 17, return True!

AV 14(07)23 | 2957 Vi VB LA N7/ Y

Next Lectures

« We shall finish exploring Binary search

» We shall investigate which of the two search
algorithms: or Binary search, is the most
time efficient, i.e., fasteste

* We shall look into sorting:
* Insertion sort
* Merge sort

» And figure out which one is the most time
efficient, I.e., fastest!

