
CMPT 120
Lecture 32 – Internet and Big Data

Algorithm - Searching

Last Lecture

• We continued looking under the hood,
continued having a close look at the computer
memory!

• We learnt how to convert binary numbers into
decimal numbers and decimal numbers into binary
numbers

• We learnt how to convert binary numbers into ASCII
characters and given the ASCII table, we certainty
could convert ASCII characters into binary numbers
(and decimal numbers)

• We learnt why 255 meant full on green (or red or
blue)

• We learnt what Kb, Mb, Gb, etc. (as well as KB, MB,
GB, TB) stood for

2

Source: https://www.dreamstime.com/stock-photos-car-open-hood-hand-drawn-sketch-cartoon-illustration-image36401843

Review:

3

-> 1 x 26 + 1 x 23 + 1 x 22

= 64 + 8 + 4

= 76

01001100

4

1 00000001

2 00000010

3 00000011

4 00000100

5 00000101

6 00000110

7 00000111

8 00001000

9 00001001

10 00001010

11 00001011

12 00001100

13 00001101

14 00001110

15 00001111

31 00011111

64 01000000

255 11111111

256 100000000

Why does 255

means full on

green or red or

blue?

The value of each

colour component of

the RGB colour

scheme is expressed

using 8 bits (1 byte).

We call this colour

depth.

So, the bitmap

representing our

images has a colour

depth of 24 bits (3

bytes): 1 byte to

express the intensity of

R, 1 byte to express

the intensity of G and

1 byte to express the

intensity of B. And the

largest value we can

expressed using 8 bits

(1 byte) is 111111112,

i.e., 25510 and the

smallest value is 0.

Review:

106

5

106 – 64 = 42

10

i.e., 128

does not
fit in 106

i.e., 64

does
fit in 106

42 – 32 = 10

1 0

10 – 16 = nop! 16 does not fit in 10

106 – 128 = nop! 128 does not fit in 106

10 – 8 = 2

1

2 – 4 = nop! 4 does not fit in 2

2 – 2 = 0

0 1 0

0 –1= nop! 1 does not fit in 0

etc……………………………………………

Review:

6

Homework

Binary decoder?

Step 1 - Problem Statement

Write a binary to decimal decode program

that converts the binary number the user

enters.

Step 2 - Design

7

Today’s Menu

The Internet and Big Data

• Internet browsers like Google must be able to

search through billions of web pages very efficiently

• In this unit, we shall learn various algorithms that

allow us, and Google, to search and sort through

lots data and we shall learn to compute how fast
(time efficient) these algorithms are

• Today, we shall learn a few searching algorithms

• Linear search

• Binary search
8

A LOT of

data!

Where is search used?

• Google

• Domain name system

(DNS) servers

• Music databases

• Amazon customer

databases

… everywhere!

Because there is a large

amount of data out

there, searching needs to

be done especially fast!

9
DNS: Domain Name System

Example of addresses for the sfu.ca
domain

https://db-ip.com/all/142.58.27#:~:text=142.58.,Fraser%20University%20%2D%20Search%20IP%20addresses

Searching
First, the basic algorithm: Linear Search

Anything in

size 9?

10

Let’s try!
Is in this sequence?

42 8 12 34 2 67 33 26 89 54

11

Called

“target”

Our reading calls it The Sequential Search!

What did we do to find the
target?

12

Linear Search – Take 1

Step 1 – Problem Statement

Given a list of numbers (e.g. of shoe sizes) and a
target number we are looking for in the given
list, can we write a function that returns True if
the target number is in the given list of numbers,
otherwise, it returns False?

Requirements:

We cannot use a Python conditional statement
such as if x in list: Can you see why?

Step 2 – Design

Step 3 – Implementation

Let’s start coding! 13

testData1 =

testData2 =

testData3 = []

linearSearchBool(testData1,) ->

linearSearchBool(testData1,) ->

linearSearchBool(testData1,) ->

linearSearchBool(testData2,) ->

linearSearchBool(testData2,) ->

linearSearchBool(testData2,) ->

linearSearchBool(testData3,) -> 14

Step 4 - Testing

We are

expecting:

Observations

15

Reminder: Generalisation
guideline and testing
• When we design algorithms, programs and

functions, we want to make sure they solve as
many similar problems as possible, i.e., they
work with as many different data configurations
as possible

-> generalisation guideline

• Therefore, we shall test our algorithms, programs
and functions accordingly:
• For example: Does our linear search algorithm work

successfully with …

• An empty list? A sorted list?

• An list containing the same element?

• A list containing the target number once?

• A list containing the target number several times, etc…
16

Linear Search – Take 2

Step 1 – Problem Statement

Given a list of numbers (e.g. of shoe sizes) and a
target number we are looking for in the given list,
can we write a function that returns the location
of the target number in the given list of numbers,
e.g., its index, otherwise it returns None?

Requirements:

We cannot use a Python conditional statement
such as if x in list:

Step 2 – Design

Step 3 – Implementation

Let’s start coding! 17

Linear search algorithm

• Advantages

• Simple to understand, implement and test

• Disadvantages

• Slow (time inefficient) because it looks at

every element

• Wait a minute! Not always!

• We saw that for some of

our test cases linear search

did not look at every element

18

That is true!

We’ll come

back to this

real soon!

Time inefficient linear search?

• Linear search could be quick if the target

element we are looking for is the first element in

our data:

• or it could be slow if the target element we are

looking for is the last element in our data:

• Conclusion:

Sometimes linear search is time efficient

and sometimes, it isn’t! 19

Various scenarios

• Best case scenario

ourList = [0, 6, 9, 2, 5, 3, 7, 1, 4]

target:

• Average case scenario

ourList = [0, 6, 9, 2, 5, 3, 7, 1, 4]

target:

• Worst case scenario

ourList = [0, 6, 9, 2, 5, 3, 7, 1, 4]

target:
20

Data organization vs.
Searching

• Would the way we organize our data (e.g.,

data in order, not in order) affect the time it

takes to find a target element in a sequence?

• What if we were to sort our data?

• Would this affect the time efficiency of linear

search?

21

Various scenarios

• Best case scenario

ourList = [0, 1, 2, 3, 4, 5, 6, 7, 9]

target:

• Average case scenario

ourList = [0, 1, 2, 3, 4, 5, 6, 7, 9]

target:

• Worst case scenario

ourList = [0, 1, 2, 3, 4, 5, 6, 7, 9]

target:
22

Consider …

• Consider our vinyl collection. How could we
organize our LPs to make searching through them
faster?

• Although it will take some time to do the initial
sorting (we will see in our next lectures), a sorted
sequence of elements will make looking for an
target element much quicker later, every single
time.

23

Source: https://victrola.com/blogs/articles/8-classic-vinyl-records-you-should-own

How Binary Search works!

Searching for target element 17 and return True if

found in this sequence:

Iteration #1:

1. Find middle element of sequence:

2. Compare middle element 29 with target element 17

3. Because 17 < 29, we can ignore the 2nd half of array:

24

29

8

How Binary Search works!

Iteration #2:

1. Find middle element of the remaining sequence:

2. Compare middle element 8 with target element 17

3. Because 17 > 8, we can ignore half of array:

25

17

How Binary Search works!

Iteration #3:

1. Find middle element of the remaining sequence:

2. Compare middle element 17 with target element 17

3. Because 17 == 17, return True!

26

Next Lectures

• We shall finish exploring Binary search

• We shall investigate which of the two search

algorithms: Linear or Binary search, is the most

time efficient, i.e., fastest?

• We shall look into sorting:

• Insertion sort

• Merge sort

• And figure out which one is the most time

efficient, i.e., fastest!
27

