
CMPT 120
Lecture 27 – Computer Vision

Python – Creating a module and

List Comprehension

Last Lecture
• We almost solved the image processing problem of

combining (merging) one image onto another

• In doing so, we were introduced to …

• The PIL library and the image module

• How to open an image file

• And get information about the image file

• like its width and height

• How to read (load) the content of an image file

• Pixels expressed as tuples -> (r,g,b)

• RGB colour scheme -> color picker app.

• How to go through each pixel of A?

• Nested for loops are useful for traversing 2D

data structures (or lists of lists)

2

Today’s Menu

• Continue having fun processing images

• Create our own modules

• Let’s have another look at Lists!

3

Back to our “combining
images” problem …
Step 1 - Problem Statement

• Combine (merge) the image file kid-

green.jpg with the image file beach.jpg such

as to produce an image file that displays the kid

on the beach!

4

Back to our “combining
images” problem …

5

Step 2 – Design

• Let’s have a look at the rest of the comments in
the CombinedImages.py program

Step 3 – Implementation

• Let’s translate these comments into Python
code keeping in mind the following questions:

1. How to go examine each pixel of A?

2. How to figure out if this pixel is green?

3. If so …

1. How to find the corresponding pixel in B?

2. How to write the pixel in B into A?

Review - Two ways to access
a pixel tuple's rgb values

Way 1 - Get aPixel at (0,0)

aPixel = imageKidGreen[0,0]

Get this pixel’s r value

r = aPixel[0]

Get this pixel’s g value

r = aPixel[1]

Get this pixel’s b value

r = aPixel[2]
6

Review - Two ways to access
a pixel tuple's rgb values

Way 2 - Get this pixel’s r value directly

g = imageKidGreen[0,0][0]

Get this pixel’s g value directly

b = imageKidGreen[0,0][1]

Get this pixel’s b value directly

b = imageKidGreen[0,0][2]

7

Create our own image function

Step 1 – Problem Statement
Write a function that returns True
when a pixel is green and
False otherwise

Step 2 – Design

• How to discover if a pixel is green

• Various ways of doing this:

1. if g == 255:

2. if g > 230 and g <= 255:

3. if r < 180 and r >= 0 and

g > 230 and g <= 255 and

b < 120 and b >= 0: 8

Where do these

figures come from?

Let’s give this function a try!

9

…

Can you complete

the function?

Step 3 – Implementation

Let’s create our own module

• Since a module contains functions that are

related to each other, perhaps we can create
our own module myColourModule.py and put

our functions

• isPixelGreen(G)

• ColourOfPixel(pixel) – from Practice

Exam #7

into this module!

• Description: Module containing colour related

functions 10

Let’s create our own module

11

Create a new file

Name your module using

a descriptive filename
and a .py extension

Paste your function

definitions in here,

and remove them

from your main
program

Let’s use our own Module!

12

…

Import the module

A module’s name

is its filename with
the .py removed

In the main program

Use the module’s

name when calling
its functions

Let’s have another look at lists

Review - Lists – so far …

13

At the IDLE shell:

Review - Creating a list by
accumulation

14

Algorithm:

Another way of creating a list

List comprehension

• Concise way of creating a list

• Syntax:

How it executes?

1. The for loop (clause) iterates through each
item in the sequence.

2. The items are filtered by the if clause if there is one.

3. The expression is executed for each item in the
sequence (or each iteration of the for loop) …

4. … creating the resulting list.

15

Optional

The expression

within [] describes

each element of

the list that is being

built.

Example 1:

max = 5

list1 = ["*" for number in range(max)]

How it executes?

1. The for loop (clause) iterates through each

number in the sequence -> 0, 1, 2, 3, 4.

2. The expression is executed for each iteration of the for

loop … -> 5 times

3. … creating the resulting list ->
list1 = ['*', '*', '*', '*', '*']

16

List comprehension - Examples

Example 2:

length = 4

list2 = [number for number in range(length)]

Example 3:

operandList = ["4", "5"]

operandList = [int(operandList[i]) for i in

range(len(operandList))]

17

List comprehension - Examples

List comprehension – Examples

Example 4:

• How to create a grid

Set variables

row = 5

column = 3

cellContent = " – "

Create a grid

grid = [[cellContent for aColumn in range(column)]

for aRow in range(row)]

18

Review - Understanding
images: 2D Data Structure

19

This is what is "under
the hood" of a 2x2

colour image. Tuples
are contained inside a

2D list of lists.

2 is the length
of the outer list
3 the length of
the inner list

This is the
Python

syntax to
access a list
inside a list,
i.e., a list of

lists!
Note: it's
slightly

different
than image

access
syntax, i.e.,
image[c, r]

Next lecture

• Practice Exam 8

• Bring your paper, pens/pencils/eraser!

20

