CMPT 120

Lecture 21 – Graphics and Animation Python – Implementing **Recursion** and introducing **Dictionary**

Last Lecture

- Investigated Recursion
- Solved the factorial problem using recursion
- Visualized the execution of our recursive factorial function

Today's Menu

- Let's try again: Solve another problem using recursion
- Close our unit on Computer Graphics looking into drawing trees iteratively as well as recursively using turtle
 - Introduce Dictionary

Let's try again!

Step 1 - Problem Statement

- Remember the palindrome function of Practice Exam 4?
- Solve the palindrome problem recursively

Step 2 – Design

Step 2 - Design

• Using an example: kayak

Using an example, we observe how we solve a palindrome problem by hand, thinking recursively and looking for the pattern. Then we implement the pattern!

Source: https://en.wikipedia.org/wiki/File:Man-scratching-head.gif

Step 3 – Implementation Step 4 - Testing 5

Drawing Trees

Rendering of wilderness nature reserve using 3D computer graphics

Source: https://www.kisspng.com/png-rendering-wilderness-nature-reserve-3d-computer-gr-4461372/

Iteratively -> using for loop ...

... and **random** module

Let's have a look at the code!

Turtle and Trees!

Step 1 - Problem Statement

• Draw a tree recursively.

Step 2 – Design

- Using this tree as an example, let's examine how it was created.
- This will give us a sense of the algorithm we need to code into Python. Then we will be ready to start our next step...
- Step 3 Implementation 4

Let's see how we can repeat these two Python statements: aTurtle.forward(...) aTurtle.left(...)

3

level

furtle turns left

forward

turtle moves

Draw a tree recursively

Draw a tree recursively

```
# Define a recurisve function that draws a tree
def drawTree(aTurtle, aLevel, aBranchLength):
    '''Draws a tree recursively where
    "aTurtle" is the turtle drawing the tree,
    "aLevel" is the number of levels of branches and
    "aBranchLength" the length of branch to draw.
    '''
```

Base Case:

```
f If we are at the leaf level (level == 0), draw a green leaf!
if aLevel == 0:
    aTurtle.color("green")
    aTurtle.stamp()
    aTurtle.color("brown")
```

else:

```
# Recursive Case:
# Draw a branch
aTurtle.forward(aBranchLength)
```

```
# Turn left and draw a smaller tree
aTurtle.left(40)
drawTree(aTurtle, aLevel - 1, aBranchLength/1.5)
```

```
# Turn right and draw a smaller tree
aTurtle.right(80) # 40 + 40
drawTree(aTurtle, aLevel - 1, aBranchLength/1.5)
```

Go back aTurtle.left(40) aTurtle.back(aBranchLength)

Question?

***Main part of my program

Creates a graphics window "canvas"
canvas = turtle.Screen()

Create a turtle named "tt"
tt = turtle.Turtle()

Set up our turtle "tt"
tt.color("brown")
tt.width(3)
tt.shape("triangle")

```
# Move our turtle "tt"
```

tt.speed(0)
tt.penup()
tt.goto(0, -180)
tt.left(90)
tt.pendown()
theBranchLength = 100
tt.forward(theBranchLength)

To what value must we set the variable **theLevel** in order to create this tree?

Call our recursive

theLevel = _____ drawTree(tt, theLevel, theBranchLength) tt.back(theBranchLength)

Click on the canvas to exit
canvas.exitonclick()

Question?

***Main part of my program

Creates a graphics window "canvas"
canvas = turtle.Screen()

Create a turtle named "tt"
tt = turtle.Turtle()

Set up our turtle "tt"
tt.color("brown")
tt.width(3)
tt.shape("triangle")

Move our turtle "tt"

tt.speed(0)
tt.penup()
tt.goto(0, -180)
tt.left(90)
tt.pendown()
theBranchLength = 100
tt.forward(theBranchLength)

To what value must we set the variable **theLevel** in order to create this tree?

Call our recursive

theLevel = _____ drawTree(tt, theLevel, theBranchLength) tt.back(theBranchLength)

Click on the canvas to exit
canvas.exitonclick()

Question?

***Main part of my program

Creates a graphics window "canvas"
canvas = turtle.Screen()

Create a turtle named "tt"
tt = turtle.Turtle()

Set up our turtle "tt"
tt.color("brown")
tt.width(3)
tt.shape("triangle")

Move our turtle "tt"

tt.speed(0)
tt.penup()
tt.goto(0, -180)
tt.left(90)
tt.pendown()
theBranchLength = 100
tt.forward(theBranchLength)

To what value must we set the variable **theLevel** in order to create this tree?

Call our recursive

theLevel = _____ drawTree(tt, theLevel, theBranchLength) tt.back(theBranchLength)

Click on the canvas to exit
canvas.exitonclick()

Challenge?

 How would you modify the recursive function drawTree to get this tree?

Here is another tree problem!

Step 1 - Problem Statement

• Draws a tree for every season!

5

Dictionary

- A look-up table
- A compound data type that associates a key to a value

 key
 value

 french_dictionary = { "bonjour": "hello", "au revoir": "goodbye"}

 print(french_dictionary["bonjour"])
- Not ordered
- To access elements of the dictionary we use the key, not an index
- Mutable

Let's get coding with Dictionary!

Step 3 - Implementation

Next Lecture

- **Practice Exam 6** on Wednesday!
- Please, bring paper, pens/pencils and all your questions to our lecture on Wednesday!
- Our midterm is Friday!
- After our midterm, we shall start investigating another field of Computing Science
 Computer Vision!