
CMPT 120
Lecture 12 – Cryptography and Encryption –

The realm of secret codes

Python – Functions and while Loop

Why can't elephants

use computers?

Because they're scared
of the MOUSE!!

Source: https://heresajoke.com/computer-jokes/

Thank you Hayden!

Last Lecture

• Continued investigating the topic of

Cryptography and Encryption

1. By finishing the implementation of our

OddEvenEncryption program

• Implementing the encryption algorithm

2. By adding decryption to our

OddEvenEncryption program

• Introduced functions

2

Today’s Menu

• Finish implementing the decryption algorithm

• Create functions in our OddEvenEncryption

program

• Encrypt()

• Decrypt()

• We shall look at another way of iterating Python

statements in our programs

• while loop
3

Transposition algorithm
odd&even

Transposition algorithm odd&even:

1. Find the middle of cipherMsg

2. Store the first half of cipherMsg into String3

• This first half contains the characters originally

located in odd positions of plainMsg

3. Store the last half of cipherMsg into String4

• This second half contains the characters originally

located in even positions of plainMsg

4. Lastly, merge String3 with String4 to recreate

plainMsg

Definition: Algorithm

that shuffles elements

from their original

positions in a sequence

to new positions!

decryption

4

So far …

… we have used functions that were already built

into Python by calling them

• Built-in functions (some came from modules)

• For example: print(…), input(…), type(…),

random.randint(1, 10)

• Built-in methods

• For example: <string>.upper(),

<string>.isalpha()
5

Why creating functions?
Functions make our program easier to …

1. Implement and test -> Incremental development

• Dividing a long program into functions allows us to implement, test

and debug the parts one at a time and then assemble them into a

working program

2. Read

• Encapsulate code fragment that does one thing (functionality) in

one location, i.e., a “module” (function) and give this location a
descriptive name

3. Modify

• If we need to make a change to our program, we know where to

go, i.e., where to find the code fragment we need to change

4. Reuse

• Once we write, test and debug a function, we can reuse it in other

programs that need this particular functionality

5. No more repeated code

• Functions can make a program smaller by eliminating repeated

code - Repeated code is very error-prone

6

Review - Function
Syntax of function definition

def <functionName>([parameter(s)]) :

< 1 or more statements >

return [expression]

def -> means “here is the

definition of a function”

1 return statement

Function header

• GPS about <functionName>

• Function name is descriptive -> it

describes the purpose of the function

• Function name syntax: same as for

variable name syntax

Body of the

function

7

Execution flow and functions

• Let’s examine what happens to the execution

flow when we call functions

• using the Python code visualizer

8

From last lecture:
Your turn

• Problem Statement:

• Write a program that encrypts and decrypts

messages using the transposition algorithm

odd&even

• Requirement:

• Your program must go on encrypting and

decrypting messages entered by the user until the

user only presses the ENTER key.

9

<stmt before loop:

initialize condition variable>

while <Boolean condition> :

<first statement to be repeated>

<second statement to be repeated>

...

<stmt: modify condition variable>

<statement outside (after) the loop>

Review - Syntax of a while loop

10

Review - Syntax of a while loop

<stmt: before loop: initialize condition variable >

while <Boolean condition> :

<first statement to be repeated>

<second statement to be repeated>

...

<stmt: modify condition variable>

<statement outside (after) the loop>

• Important – About Indentation
• Statements inside the loop (i.e., statements executed at each

iteration of the loop) are the statements indented with respect to
the while keyword

• Statements outside the loop (before and after the loop) are the
statements that are not indented with respect to the while
keyword – these statements are considered to be at the same
level of indentation as the while loop

11

Review - Difference between
while and for loops

12

When best to use a while loop

• If there is a condition that will occur during the
execution of our program and when this
condition occurs, the execution of a set of
statements in our program needs to stop, then
we use a while loop

• This condition is often called a sentinel or flag

• Examples:

• User termination

• User presses the ENTER key without typing anything -
> empty string

• User enters yes/no or some special value

• User selects ‘X’ to eXit from a menu (menu-driven
program)

• Occurrence of an error

• Reading data from a file -> EOF

13

When best to use a for loop

• If we know exactly how many times we must

iterate a set of statements in our program, then
we use a for loop

14

GPS: We cannot use a while
loop with a True condition:

while True :

break

exit()

Can you see why?

15

Next Lecture

• Practice Exam #3

16

