
CMPT 120
Lecture 9 – Cryptography and Encryption –

The realm of secret codes

Python – Arithmetic operators, order of

evaluation (operator precedence)

and string/list manipulation

Why are people

afraid of computers?

They byte!

Source: https://scarymommy.com/computer-jokes, joke #31

Thank you Luke!

Last Lecture
Improving our guessing game

• Wouldn’t it be nice to play our guessing game
many times without having to press Run over and
over again?

• New Problem Statement

• Write a guessing game, which allows a player
to guess a number between 1 and 10
in 3 guesses!

• Let’s get coding! 2

Review - range() function

• Very useful in for loop

• Syntax: range([start,] stop [,step]))

• Produces a list of integers

• How does it work?

• If theLength = 5

• Then range(theLength)

produces the following sequence: 0,1,2,3,4

3

included excluded

Repeated code
-> Bad idea!
• What do you mean by repeated code?

• If the problem statement is: List some movies,

then Solution 1 would solve the problem using

repeated code -> bad idea!

• Solution 1:

print("Superman")

print("Frozen")

print("X-Men")

• Solution 2 would not -> good idea!

• Solution 2:

4

This semester, let’s
do this! ☺

This semester, let’s
not do this!

If you need to repeat

some of your code in

your program, do not

repeat the code itself

by copying and

pasting it, use a loop
instead!

Todays’ Menu

• Introducing Cryptography and Encryption

• Can we build programs that create

secret(encrypted) messages using

• Arithmetic operators

• String and List indexing and slicing mechanism

• etc…

• Let’s see ☺

5

Cryptography and
Encryption - Secret codes

• When you log onto your SFU mail account, purchase

goods on the Internet, check your grades or your

bank account online, you are using cryptography.

• Cryptography is a field of study involving many

disciplines such as mathematics, computing science,

and engineering

• It encompasses various aspects such as data

confidentiality, data integrity, and authentication

• Encryption is one of the aspects of cryptography that

deals with the process of encoding a message using

an algorithm

6

Cryptography and
Encryption - Secret codes

• In this unit, we'll see how we can

encrypt/decrypt messages using Python

programs

• To do so, we’ll need to learn

• How to manipulate characters in a string

• How to manipulate elements in a list

• How to calculate

• How to loop in various ways

• How to write our own functions
7

Encryption - Secret codes

• Makes messages confidential, secret

• It does this by using an algorithm that transforms

messages we can read into messages we can no

longer read … and back to messages we can read

• We shall call

• messages we can read plainMsg

• messages we cannot read cipherMsg

8

encryption cipherMsgplainMsg

decryption cipherMsgplainMsg

Let’s give it a go!

• Step 1 - Problem Statement:

• Write a Python program that encrypts messages

using a transposition algorithm called odd&even

9

Transposition algorithm
odd&even

Transposition algorithm odd&even:

1. Get plainMsg from user

2. Create a cipherMsg that is made of 2 strings

• String1 contains the characters located in

odd positions in plainMsg

• String2 contains the characters located in

even positions in plainMsg

3. Lastly, concatenate these two strings:

cipherMsg = String1 + String2 10

Definition: Algorithm

that shuffles elements

from their original

positions in a sequence

to new positions!

encryption

An example:

• Let’s encrypt this message "Hello, World!"

11

Let’s give it a go! (cont’d)

• Step 2 – Design

Transposition algorithm odd&even:

1. Get plainMsg from user

2. Create a cipherMsg:

For each character in the plainMsg

• If the character is at an odd position in

plainMsg

• Then this character goes into String1

• Otherwise it goes into String2

3. Lastly, concatenate these two strings:

cipherMsg = String1 + String2
12

Let’s give it a go! (cont’d)

• Step 3 – Implementation

In order to implement our encryption algorithm,
we need to know …

1. String concatenation

2. Arithmetic operator -> modulo operator

• Example:

3. Order of evaluation (precedence)

• Example:

4. Running count (accumulator) algorithm
13

Let’s give it a go! (cont’d)

• Step 4 - Testing

14

Your turn:
Let’s decrypt our message!

• Step 1 - Problem Statement:

• Write a program that decrypts messages that

have been encrypted using the transposition

algorithm odd&even

15

How to access one string character at a time?

Answer: Use the index associated with the

character as illustrated below:

positive indexing-> index: 0 1 2 3 4 5 6 7 8 9 10 11 12

Example: message = "Hello, World!"

• So if we wish to access

• The 1st character of the string, we use the index 0

• The 2nd character of the string, we use the index 1

• etc…

Review - String indexing:
positive indexing

16

Review - String indexing:
positive indexing examples

Careful: Positive index starts at 0

When does the
“IndexError: string index out of range”

error occur?

17

• There is another way we can use to access one

string character at a time: negative indexing:

Example: message = "Hello, World!"
negative indexing-> index: -13 -12 -11-10-9 -8 -7 -6 -5 -4 -3 -2 -1

• So if we wish to access

• The 1st character of the string, we use the index -13

• The last character of the string, we use the index -1,

• etc…

Review - String indexing:
negative indexing

18

Review - String indexing:
negative indexing examples

Careful: Negative index starts at -1, not 0

When does the

“IndexError: string index out of range”

error occur?

19

How to access a section (slice) of a string at a time?

Answer: use indices to indicate the string slice

positive indexing-> index: 0 1 2 3 4 5 6 7 8 9 10 11 12

Example: message = "Hello, World!“

Syntax: <aString>[start : stop : step]

• start

• stop

• step

• Example: So if we wish to access the string slice
"Hello", we use message[0:5]

Review - String slicing
(using positive indices)

20

positive indexing-> index: 0 1 2 3 4 5 6 7 8 9 10 11 12

Example: message = "Hello, World!“

• message[0:5]

• We use index 0 to indicate the start of the string
slice

• Inclusive -> the character at index 0 is included in

the string slice

• We use index 5 to indicate the stop of the string

slice

• Non-inclusive -> the character at index 5 is ***not***

included in the string slice

Review - How does String
slicingworks?

21

Review - String slicing -
Examples

Note what happens when stop represents an index that is out of
range, i.e., the index 25 no longer correspond to a character of

the string message since this string only has 13 characters, i.e.,

from index 0 to index 12. So, Python interprets the index 25 to

mean “all the way to the end of the string”. Therefore, it creates

a slice of the string message from its character at index 7 all

the way to its last character (because the index of this last
character is < 25).

22

Review - Strings (sequence)
manipulation

Operation

Name

Operator/

function

Comment

concatenation + Combine strings together

repetition * Concatenate a string that is being

repeated a number of times

indexing [n] Access an element of a string

slicing [: :] Extract a part of a string

length len(aString) Determine the number of characters

in a string aString 23

Review: Arithmetic operators

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Floor division: //

• Modulus: %

• Exponentiation: **

• Syntax: <operand> <operator> <operand>

• Running count (accumulator) algorithm
• Example: charCount = charCount + 1

OR charCount += 1

< … > signifies “replace

with one operator”

< … > signifies

“replace with an

operand, i.e., an

integer or a float”

24

Review: Order of Evaluation

(expressions...) Parentheses P

x[index],

x[index : index],

x(arguments...)

Indexing (aka Subscription),

Slicing,

Call

** Exponentiation E

*, /, //, %
Multiplication, division (float and int),

remainder MDR

+, - Addition and subtraction AS

<, <=, >, >=, !=, == Relational operators

not Logical operator

and Logical operator

or Logical operator

Highest precedence

Lowest precedence

25

Next Lecture

• Practice Exam #2 ☺

26

