
CMPT 120
Lecture 6 – Chatbots

Robustness -> User Validation, Efficiency,

Testing (Step 4 of Software Development process)

and Errors

Why did the computer
show up late to work?

It had a hard drive!

Source: https://www.rd.com/jokes/computer/

Thank you Colton!

Feedback – Assignment 0

• Thank you for all your jokes!

• Lots of great jokes!

• Some of you took the opportunity to practise the Python
building blocks we have learnt so far!

• Make sure you satisfy the requirements
• Write a Python program that outputs a computer joke to the

computer monitor screen when it is executed/run.
• This means: use print(…) function

• Not a computer joke

• Your program must also print the source of your computer
joke, i.e., the link or location where you found the joke.
• Do not put your source in a comment

• Reminder:
• For Assignment 1: there are no extension given

• This means that you have to submit your program on time.

2

Careful!

• This is on the Shell:

• It is not a Python program created using the Editor!

• Make sure you submit the right program! ☺

3

Last Lecture

✓We continued practicing using conditional

statements in our Python programs

✓What if there are many conditions (many

branches)?

✓What if we are dealing with integers?

✓Can these conditional statements be nested?

✓We also played around Boolean values and

Boolean expressions

4

Let’s finish this one first!

• Step 1 - Problem Statement

• Write a grade-to-letter grade converter that

converts a grade into letter grade.

5

Today’s Menu

• Improving grade-to-letter grade converter

• Robustness -> User input Validation

• Efficiency

• Step 4 Testing and Errors

• Our Guessing Game:

6

Let’s practice a little!

7

How about this one?

8

Hand Tracing

• What is it?

• When a software developer manually goes

through her/his code (program) and “execute” it

as if s/he was a computer, mimicking the Python

Interpreter

• Why doing it?

• To figure out what our program does/produces,

hence to verify whether our program is solving the

problem

• To determine whether our program contains any

errors
9

Robustness

• What if the user enters a grade < 0 or > 100 ?

• User Input Validation

10

strongly formed or constructed

- Merriam Webster

able to withstand or overcome adverse conditions.

- Oxford Dictionary

Efficiency

• Consider this axis:

• Let’s go to our Python code! 11

0 10050 60 70 80 90

F E D C B A

More efficient? How?

Original version:

versus

improved version:

12

Step 4 Testing
• Syntax error

• Example: print(int("23bottles))

• Runtime error
• Example: print(int("23bottles"))

• Semantic error

• When you test your code
• A test case is made of:

1. Test data
• Data - must be specific

• We need to choose this data before we execute our program

2. Expected result
• The result we expect our program to produce with this data

• We need to compute it before execute our program

3. Actual result
• The result our program actually produced (and printed on the screen?)

• Our program passes the test if expected result = actual result

• How many test cases must we create?
13

Last Lecture - Your turn!

• Step 1 - Problem Statement

• Write a guessing game, which allows a user to

guess a number between 1 and 10.

14

Step 4 – Testing

• Testing our guessing game:

1. Test case 1 : input != number to guess

2. Test case 2 : input == number to guess

• How to know the number to guess?

• The trick is to …

15

Robustness - User Validation

• What if the user enters a guess < 1 or > 10

• We know how to deal with this situation!

• Testing our new version of our guessing game:

1. Test case 1 : input != number to guess

2. Test case 2 : input == number to guess

3. Test case 3 : invalid input: 53 (> 10)

4. Test case 4 : invalid input: -21 (< 1)

16

Robustness - User Validation

• What if the user enters ”banana”?

• Misbehaving user versus well-behaved user

• Testing our new version of our guessing game:

1. Test case 1 : input != number to guess

• How to know the number to guess?

• The trick is to …

2. Test case 2 : input == number to guess

3. Test case 3 : invalid input: 53 (> 10)

4. Test case 4 : invalid input: -21 (< 1)

5. Test case 5 : invalid input: ”banana”

17

Review: How to construct a
Boolean condition?

Example:

<string>.isdigit()

<string>.isalpha()

etc…

Result of Boolean expression: True or False

SYNTAX: .<function>(…) <function>(…) operator

Some Python functions return numerical values
Here are some examples:

• len(“hello”) that returns 5,
• int(“27”) that returns 27
• “hello”.find(“lo”) that returns 3

Similarly, there are Python functions that return Boolean values
Here are some examples:
• all([1<2,2<4,5==5]) that returns True,
• “123456”.isdigit() that returns True ,
• “123456”.isalpha() that returns False

Example:

all(…)

etc…

Example: the in

containment test

operator

etc…

18

Summary

• Feedback from Assignment 0

• Improving grade-to-letter grade converter

• Robustness -> User input Validation

• Efficiency

• Step 4 Testing and Errors

• Our Guessing Game:

19

Next Lecture

• Let’s see how much we have learnt so far by

having our first Practice Exam!

• Great chance for us …

• To hone your software development skills

• To become familiar with:

• Types of questions asked in CMPT 120 exams

• Writing code on paper

• To work in teams

• And to ask all your questions!

• Our first in-class activity -> 1%

• I will ask you to hand in your answer to
one of the questions in our Practice Exam #1

20

Course grading

scheme on our

course website: Best

7 in-class exercises

out of 10: 1% each,
for a total of 7%

