

Source: https://twitter.com/MEKTORY/status/893408704590204928

CMPT 120

Lecture 2 – Introduction to Computing Science – Problem Solving, Software Development Process, Algorithm and Programming using Python

Last Lecture

✓Introducing the course

✓What is this course all about?

✓What kind of students take CMPT 120?

✓What do we need for this course?

✓ How does this course work?

- ✓Q&A -> Waiting list
- ✓Let's get started!

How does a computer work?

Data stored in Memory

✓Python demo

How to do well in this course?

- Not about "remembering" but about "doing"
- We can create a cheat sheet for our exams
 - Can start now gathering info for our cheat sheet

Today's Menu

- Problem Solving
- Software development process
 - Natural and Formal languages -> see our Readings
 - Algorithm and programming language
 - Our first program
 - Comments + header comment block
 - Python
 - print() and input() function
 - strings
 - variables
 - assignment operator =
 - Execution flow
 - Interpreted program versus compiled

Slide from our last lecture

Solving a problem in the "real" world

What are the steps we go through when we solve a problem?

Source: https://<u>corporatetrainingmaterials.com/course/Creative_Problem_Solving</u> https://www.sandler.com/blog/bring-problem-prospect-does

Source: https://<u>corporatetrainingmaterials.com/course/Creative_Problem_Solving</u> https://www.sandler.com/blog/bring-problem-prospect-does (7)

What is an algorithm?

- A finite sequenced set of unambiguous steps that, once executed, produces a result
 - Finite: This set of steps executes in a finite amount of time i.e. it should finish at some point
 - Sequenced: The steps must be executed in the order in which they are listed
 - Unambiguous: Each step is clear
 - **Result**: This result solves the initial problem
- The algorithm also describes
 - The data it needs in order to work -> input
 - The result it produces -> output

More about algorithms

Video <u>Algorithms</u> from Khan Academy

For your viewing pleasure

How do we express an algorithm?

- 1. Use a natural language like English
 - Example problem: compute final course grade
- 2. Use a mix of natural language and computer language -> **pseudocode**
 - Example problem: compute final course grade
- 3. Use a flowchart
 - Example problem: compute final course grade
- 4. In a diagram
 - Example problem: build a Billy shelving unit

5. In a video (verbal instructions and pictures)

<u>Example</u> – problem: make tea

Programming language

- This semester, we'll be learning a new language
- What is a programming language?
 - <u>Definition</u>: is a language that allows us to communicate with the computer, specifying detailed instructions that a computer can understand and execute
 - A programming language, like a natural language, is made of
 - 1. Vocabulary ("building blocks")
 - 2. Syntax rules (grammar)
 - Python, C++, Javascript are programming languages

The first programmer

 In 1842, Lady Ada Lovelace wrote the first computer program for Charles Babbage's Analytical Engine (1837)

Source:

https://en.wikipedia.org/wiki/Ada_Lovelace#/media/File:Ada_Lovelace_portrait.jpg http://collection.sciencemuseum.org.uk/objects/co62245/babbages-analytical-engine-1834-1871-trial-model-analytical-engines

Let's give it a go! – Take 1

1. Problem Statement

- Write a Python program using IDLE. You program must display Hello, World! on the computer monitor screen.
- 2. Design
- 3. Implementation
- 4. Testing

Source: Source: https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Software Development Process

Let's give it a go! – Take 2

- 1. Problem Statement:
 - Create a greeting chatbot that greets the user. **Requirements:**
 - It must include the user's name as part of the greeting
 - We must use Python 3.12 IDLE
- 2. Design:
- 3. Implementation:
- 4. Testing:

Comments in Python

The Python interpreter ignores
(i.e., does not interpret) anything written to the right of the # character, all the way to the end of a line

Python statement # some comments

How to create comments in our Python program

 We can use the steps of our algorithm as comments in our Python program

Reasons for using comments in our Python program

- 1. Explaining what the statements of our program do
- Temporarily "removing" code from our program without deleting it, as we are **developing** and **debugging** our program

Header Comment Block

- Purpose: Give information about our program
- Composed of:
 - Filename
 - Description of program
 - Author
 - Date of creation or modification
- Location: At the very top of our program
- Execution?
 - Since we start each line of our header comment block with a # sign, i.e., making each line a comment, this signifies that the Python interpreter skips the entire header comment block and start executing the first non-comment line below it

Example of a Header Comment Block

Interpreted program versus compiled program

Interpreted program

Source: https://www.blueridge.edu/programs-courses/interpreter-americansign-language/interpreter-american-sign-language-asl/

Interpreted program versus compiled program

Compiled program

Source: https://www.commoncraft.com/blog-categories/translations

Our first Assignment (0)

- Has now been posted!
- Let's check it out!

Review Questions

- 1. What is the single most important skill for a computing scientist?
- 2. Comments and <u>can make</u> your programs much easier for humans to parse. Use them liberally!
- 3. What do natural languages and formal languages Have in common?
- 4. How can I express an algorithm?
- 5. How would I display 4 + 7 = 12 on the screen?

Review Questions

- 6. What are the steps we performed when we solve a problem using software?
- 7. What do we put in a header comment block and why?
- 8. What would print ("Above\nBelow") produce on the screen?
- 9. Give an example of an algorithm?
- 10. Why do we need algorithms?

Summary

- Problem Solving
- Software development process
 - Natural and Formal languages
 - Algorithm and programming language
 - Our first program
 - Comments + header comment block
 - Python
 - print() and input() function
 - strings
 - variables
 - assignment operator =
 - Execution flow
 - Interpreted program versus compiled

Next Lecture

- Introducing Automation Chatbots
- Can we build chatbots using
 - print(...) and input(...)
 - variables
 - strings
 - and more ...
- We shall see 😊