
TOPICS
. l

.1 Introduction
1.2 Hardware and Software
1.3 How Computers Store Data

1.4 How a Program Works
1 .5 Using Python

I

I

i

rl l !
i , i i ' , l Introduction

{ Think about some of the different ways that people use compurers. In school, studenrs
use computers for tasks such as writ ing papers, searching for articles, sending email, and
participating in online classes. At work, people use computers to analyze data, make pre-
sentations, conduct business transactions, cornmunicate with customers and coworkers,
control rnachines in rnanufacturing facil i t ies, and do many other things. At home, people
use computers for tasks such as paying bil ls, shopping online, communicaring with friends
and family, and playing computer games. And don't forget that cell phones, iPodso, smart
phones, car navigation systens, and many other devices are computers too. The uses of
computers are almost l imitless in our everyday l ives.

Computers can do such a wide variety of things because they can be programmed. Thrs
means that computers are not designed to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform
a task. For example, Figure 1-1 shows screens using Microsoft ril/ord and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals workrng as programmers or software developers. A
programmer, or software deueloper, is a person with the training and skills necessary ro
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers' work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the
Python language. The Python language is a good choice for beginners because it is easy to learn

, l

I

Chapter I Introduction to Computers and programming

Figure 1-1 A word processing program and an image edit ing program

and programs can be written quickly using it. Python is also a powerful language, popular with
professional software developers. In fact, it is has been reporred that Python is used by Google,
NASA' YouTirbe, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few
basic things about computers and how they work. This chapter wil l build a solid founda-
tion of knowledge that you wil l continually rely on as you study computer science. First,
we will discuss the physical components that computers are commonly made of. Next, we
will look at how compltters store data and execute programs. Finally, we will get a quick
introduction to the software that you will use to write python programs.

!
1.2 Hardware and Software
I

L concf pT: The physical devices that a compurer is made of are referred ro as rhe
computer's hardware. The programs that run on a computer are referred
to as software.

Hardware

The term hardware refers to all of the physical devices, or components, that a computer is made
of. A cornputer is not one single device, but a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a compute. plays its own part.

If you have ever shopped for a cornputer, you've probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics carJs, and
so on. Ur-rless you already know a lot about computers, or at least have a friend that
does, understanding what these different componenrs do might be challenging. As shown in
Figure 1-2, a typical computer system consists of the following major .o-porr.rrtg

a

a

a

The central processing
Main memory
Secondary storage devices

i .2 Hardware and Software

Figure 1-2 Typical components of a computer system

Central Processing
Unit

Main Memory
(RAM)

I nput
Devices

------>

ffi

__.___>ww
W

Output '&*
Devices

----->

-*l>

------t>

Secondary
Storage Devices

. Input devices

. Output devices

Let's take a closer look at each of these comoonents.

The CPU
\7hen a computer is performing the tasks that a program tells it to do, we say that the
computer ts rwnning or executing the program .The central processing wnit, or CPU, is the
par:t of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the con.rputer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and rnechanical com-
ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The twcr
women in the photo are working with the historic ENIAC computer. The ENIAC which
is considered by many to be the world's first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big cPU, was 8 feer tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the old
electromechanical CPUs in early computers, microprocessors are also much more powerful.

Chapter I Introduction to Computers and programming

Figure l-3 The ENrAC computer (courtesy of U.s. Army Historic Computer rmages)

processor (Creativa/S h utterstock)

-l-

' l .2
Hardware and Software

iitlilran rn bVdrernritq.}r,t/

You can think of main mernory as the computer's work area. This is where the compurer
stores a program while the progr:rm is running, as well as the data that the prograrn is
working with. For example, suppose you are using a word processing program t,, *rit.

",-,essay for one of your classes. \fhile yor,r do this, both the *ord pro..ir ir.rg i.ng."r11 and the
essay are stored in main memory.

Main memory is comrnonly known as rdndom-Access memory, or 1tAM. It rs called
th is because the CPU is able to qLr ick ly access data stored at any random locat ion in
RAM' RAM is usual ly a uolat i le type of memory that is r - rsed only for remporary sror-
age while a program is runnir-rg. When the compllter is turned off, the contents of RAM
are erased' Ins ide your computer , RAM is s tored i r r ch ips, s i rn i lar to the ones s l . rown in
F igu re 1 -5 .

Itri iqllrrrie 1,"5 [Mernor1,, r.hlps (f ar:rla/5LlLii ci-rtr_tr.l()

S,ec el, wn eil ;',t li'lr' :; f,, o) t,,i1t q, e !ir) ili,V i c tt :i

Secondary stordge is a type of merrory that c i r r r hold c l i r ta for long per ioc ls 9f t inre, cve '
when ther :e is r ro power to the cornpl r ter . Pr<lgr i r rns are norrnal ly s tored in sec<lnc l i r ry
memory arrd loaded into n la in l remory as neeclec l . Inrpor t : rnt c lata, sr - rch as worc l pr . -
cessing docurrents, payro l l dat : r , and inventory rccords, is snrvcd to sec<lr rc lary s t6rage
as we l l .

The most corlmon type of secondar:y storage clevice is the disle driue. A traclit i .rr:rl cl isl<
d.rive stor:es data by rnagnetically encoding it onto a spirrnirrg circr-rlar disk. Solicl-stare
driues, which store data in solid-state memory, are increasi,rgly t..,r,.,. l ,r.rg 1ropul:rr. A solid-
state drive has no moving parts and operates faster thiu.r n

't.r ' ,dit iun,,, l
cl isk drive. Mosr

computers have sclme sort of seconclary storage device , either a tr:rdit ional clisl< clrive or a
solid-state drive, rnounted ir-rside tl-reir case. F,xter:nal storage devices, which cgnnect to ore
of the computer's commttnication ports, are irlso availabl.. E"t.rr-r, ' ,1 storirge devices car.r be
used to create backup copies of important data or to move data to another cornputer.

In addition to external storage devices, many types clf devices have been created f 'r
copying data and for moving i t to other compurers. For many years f loppy d isk dr ives
were popular. A floppy disk driue records data onto a small ituppy disk, which can be
removed from the dr:ive. Floppy disks have many clisadvantages, however. They hold
only a small amount of data, are slow to access data, and .Jr-r b. unreliable. Floppy
d-isk drives are rarely used today, in favor of superior devices such as USB drives. USts
driues are srnall devices that plug into the computer's USB (universal serial br-rs) port arrd

Chapter
.l

Introduction to Computers and Programming

appear to the system as a disk drive. These drives do not actually contain a disk, how-
ever. They store data in a special type of memory known as flash memory. USB drives,
which are also known as memory sticks and flash driues, are inexpensive, reliable, and
small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but rs
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

Input Devices
Input is any data the computer collects from people and from other devices. The component
that collects the data and sends it to the computer is called an input deuice. Common input
devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk drives and
optical drives can also be considered input devices because programs and data are retrieved
from them and loaded into the comDuter's memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be a
sales report, a list of names, or a graphic image. The data is sent to an output deuice, which
formats and presents it. Common output devices are video displays and printers. Disk
drives and CD recorders can also be considered output devices because the system sends
data to them in order to be saved.

Software
If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let's take a closer look at each.

System Software
The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on
a computer. The operating system controls the internal operations of the computer's
hardware, manages all of the devices connected to the computer, allows data to be saved
to and retrieved from storage devices, and allows other programs to run on the computer.
Popular operating systems for laptop and desktop computers include \findows, Mac OS,
and Linux. Popular operating systems for mobile devices include Android and iOS.

1.3 How Computers Store Data

Utility Programs A wtitity program performs a specialized task that enhances the com-
puter's operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.
softuare Deuelopment Took softwarb deueropment tools are the programs that pro_
grammers use to create, modify, and test software. Assemblers, .o-pil.rr, and interpret-
ers are examples of programs that fall into this category.

Application Software
Programs that make a computer useful for everyday tasks are known as application soft-ware' These are the programs that people normally spend most of their ti-. ,,r.rrrirrg-o'
their.computers. Figure 1-1', at the beginning of this .hupt.r, shows screens from two com-monly used applications: Microsoft word, a word proc.ssirrg program, and powerpoint, apresentation program. Some _other examples of applicatiotr roft*-"r. are spreadsh.., pro-grams, email programs, web browsers, and game programs.

W .n".kpoint
1.1

'!7hat
is a program?

1,.2 What is hardware?
1.3 List the five major components of a computer system.
1,4 u7hat part of the computer actually runs programs?
1 '5 What part of the computer serves as a work arca to store a program and its data

while the program is running?
1"6 lThat part of the computer holds data for long periods of rime, even when there is

no power to the computer?
1,7 what part of the computer collects data from people and from other devices?
1'8 lrhat part of the computer formats and presents data for people or other devices?
1'.9 vhat fundamental set of programs control the internal operations of the

computer's hardware?
1.10 rThat do you call a program that performs a specialized task, such as a virus

scanner, a file compression program, or a dati backup program?
1"11'

'word
processing programs, spreadsheet programs, email programs, web browsers,

and game programs belong to what ."t.gory of softwarei

How Computers Store Data

coNcEPT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer's memoty is divided into tiny storage locations known as bytes. One byte is
only. enough memory to store a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

8 Chapter 1 Introduction to Computers and Programming

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren't actual "switches." however. at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive

or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position. Figure 1-6 shows the way

that a computer scientist might think of a byte of memory: as a collection of switches that
are each fl ipped to either the on or off position.

Ff igure X-6 Think of a byte as e ight swi tches

\Wherr a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern

that represents the data. For example, the pattern on the left in Figure 1-7 shows how the
number 77 would be stored ir-r a byte, and the pattern on the right shows how the letter A
wor-rld be stored in a byte.'We explain below how these patterns are determined.

F$gnne 1-7 Bi t paLterns for the number 77 and the le t ler A

Storing Numbers
A bit can be used in a very l imited way to represent numbers. Depending on whether the bit
is turned on or off, it can represent one of two different values. In computer systems, a bit
that is turned off represents the number 0 and a bit that is turned on represents the number

1. This ccrrresponds perfectly to the binary numbering system. In the binary numbering

system (or binary, as it is usually called) all numeric values are written as sequences of 0s

and 1s. Here is an examole of a number that is written in binary:

1 0 0 1 1 1 0 1

The number 77 stored in a bvte The letter A stored in a byte

1.3 How Computers Store Data

The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are20,2t,22,23,and,so forth, as shown
in Figure 1-8. Figure 1-9 shows the same diagram with the position values calculated.
Starting with the rightmost digit and moving left, the position values arc 1.,2,4, 8, and so
forth.

Flgure l-8 The values of binary digits as powers of 2

t+ +
I I t-20
l ' 2 ,
' 2 2

23
24
Zs
26
27

Flgure 1-9 The values of binary digits

++ +
tLl

I
1 6
32
64

128

To determine the value of a binary number you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1,, 4, 8,
L6, and 128. This is shown in Figure 1-10. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

Figure 1-1O Determining the value of .1001 1 101

1001 1101

11 L
lL_

I

4
8
1 6

1 + 4 + 8 + 1 6 + 1 2 8 = 1 5 7

lO Chapter 1 lntroduction to Computers and Programming

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each

1 is represented by a bit in the on position, and each 0 is represented by a bit in the off

position.

FFgure ' ! - t 1 The bi t pattern for 157

1 2 8 + 1 6 + 8 + 4 + 1 = 1 5 7

\fhen all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. \7hen

all of the bits in a byte are set to 1 (tr.rrned on), then the byte holds the largest value that

can be stored in i t .The largestvalue thatcan be stored in a byte is 1 + 2 + 4 + 8 + l6 +

32 + 64 + 128 :255.This l i rn i t ex is ts because there are only e ight b i ts in a byte '

What if yor-r need to store a number larger than 255?'fhe answer is simple: use more than

one byte. For exarnple, suppose we pLrt two bytes togetlrer. That gives us 16 bits. The posi-

tion va|-res of those 16 bit.s woulcl be 20, 2' ,22,23, and so forth, up through 215. As shown

irr Figure 1-12,dte maximum value that can be stor:ed in two bytes is 65,535. If you need

to store a number larger th:rn this, then mor:e bytes are necessary'

Figure 1-12 Two bytes used for a large number

32768 + 16384 + 8192 + 4096 +2048 + 1024 + 512 + 256 + 128 +64 +32 + 16 + I + 4 +2 + 1 = 65535

TIP: In case you're feeling overwhelmed by all this, relax! You wil l not have to actu-

ally convert numbers to binary while programming. I(nowing that this process is taking

place inside the computer wil l help you as you learn, and in the long term this l<nowl-

edge will make you a better programmer'

d'

1.3 How Computers Store Data 11

..Sft oti"i ma w (" $'r a r',nertrt* rs,

Any piece of data that is stored in a computer's memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks.\7hen a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASC/I,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various pnnctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored ir-r memory (as a
binary number, of course). This is shown in Figure 1-13.

Filcyure "[-"i l . '- i l [h'.: i le[ier 1-!, ir; starrecl In lncnlory as Lhe nilmber 65

A==-*65*

acronym ASCII is

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and so
forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by
most all computer manufacturers. ASCII is limited, however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can
also represent characters for many of the languages in the world. Todan Unicode is quickly
becoming the standard character set used in the computer industry.

l$udwmrsqed ff.l$useffi fuetr SftcptrffiSe

Earlier you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers ar-rd real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two's complement, and real numbers are encoded in

floating-point notdtion. You don't need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

pronounced "askee."

12 Chapter 1 Introduction to Computers and Programming

Other Types of Data
Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary and a digital
deuice is any device that works with binary data. In this section we have discussed how
numbers and characters are stored in binary, but computers also work with many other
types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture

element.) As shown in Figure 1-14,each pixel in an image is converted to a numeric code
that represents the pixel's color. The numeric code is stored in memory as a binary nurnber.

F igure 1-14 A d ig i ta l image is s tored in b inary format

^ooro1
o 1 z,

o^
ororor.,o.,

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into, the
more it sounds like the original music when it is played back. A CD quality song is divided
into more than 44,000 samples per second!

$.\fit$.n..kpoint
1,.12

'What
amount of memory is enough to store a letter of the alphabet or a small

number?

1.13 \What do you call a tiny "switch" that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

1.15 \fhat is the purpose of ASCII?

1.16 \fhat encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 \X/hat do the terms "digital data" and "digital device" mean?

;:t;llff

L- CONCEPT: A computer's CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

l

1.4 How a Program Works 13

Earlier' we stated that the cPU is the most important component in a computer because it is
the part of the computer that runs programs. Sometimes itr. cpu is called the ,.computer,s
brain" and is described as being "smart." Although these are common metaphors, you
should understand that the cPU is not a brain, and it is not smarr. The cpU is an electronic
device that is designed to..do specific things. In particular, the CpU is designed to perform
operations such as the following:

o Reading a piece of data from main memory
. Adding two numbers
. Subtracting one number from another number
r Multiplying two numbers
. Dividing one number by another number
o Moving a piece of data from one memory location to another
r Determining whether one value is equal to another: value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to ue tota .viru, ,o do, u.ri rhat,s rhe purpose
of a- pr:ogram' A program is nothing more than a list of instructions that cause the CpU to
perform operations.

Each instruction in a program is a command that tells rhe CPU to perform a specific opera-
tion. Here's an example of an instruction that might appea. in a p.ogra-,

1 0 1 1 0 0 0 0

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruction
to perform an operation. l It is written in 0s and 1s because Cpus only understand instruc-
tions that are written in machine langwage, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CpU is capable of perform-
ing' For example, there is an instruction for adding numbers, there is an instruction for
subtracting one number from another, and so forth. Th. entire set of instructions that a
CPU can execute is knowr-r as the CpU's instruction set.

NoTE: There are several microprocessor companies today that manufacture CpUs.
sorle of the mor:e well-known microprocessor companies are Intel, AMD, and Motorola.
If you look carefully at your computer, you might find a t"g ,Lowi'g a logo for its
microprocessor.

Eac.h brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Irt.l .r.icropro_
cessors understand the same instructions, but they do not understand instructions for
Motorola microprocessors.

1 The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor
to move a value into the CpU.

14 Chapter 1 Introduction to Computers and Programmtng

The machine language instructton that was previously shown is an example of only one

instruction. lt takes a lot more than one instruction, however' for the computer to do any-

thing meaningful. Because the opefations that a cPU knows how to perform are so basic in

narure, n *.Jningf,rl task can be accomplished only if the CPU performs many operations'

For example, if you want your computer to calculate.the amount of interest that you will

earn from your savings account this year, the cPU will have to perform a large number of

instructlons, carried out in the prop.I, sequence. It is not unusual for a program to contain

thousands or even millions of machine language instructlons'

'rograms are usually stored on a secondary storage device such as a disk drive' 'when you

install a program on your computer, the program is typically copied to your computer's disk

drive from a CD-ROM, or perhaps downloaded from a website'

Although a program can be stored on a secondary storage device such as a disk drive'

it has to b.'.ofi.d into main memory' or RAM, each time the CPU executes it ' For

e x a m p l e , S u p p o s e y o u h a v e a w o r d p r o c e s s i n g p f o g r a m o n y o u r c o m p u t e r ' S d i s k . T o
exec.-lte th. i iog."r' ' you use the mouse to double-click the program's icon' This causes

the program toi. copied from the disk into main memory. Then, the computer's cPU

executes the copy of the program that is in main memory' This process is i l lustrated in

Figure 1-15.

Figure ' l - ' l 5 A prograrn is copied in to main memory and then executed

The program is coPied
from secondary slotage

/
to marn memory'

(

10100001 10111000 10011110 - - - - - :

Main memorY
(RAM)

The CPU executes
the program in
main memorY.

Disk drive

.When
a CpU executes the instructions in a program, it is engaged in a process that is known

as the fetch-du"odr-r*rrute cycle.This cycie, *tti.tt consists of three steps, is repeated for

each instruction in the program' The steps are

l . F e t c h A p r o g r a m i s a l o n g S e q u e n c e o f m a c h i n e l a n g u a g e i n s t r u c t i o n s . T h e f i r s t
step of the cycle is to fetJh, oi .ead, the next instruction from memory into the

CPU.
2. Decode A machine language instruction is a binary number that represents a com-

mand that tells the CiU to perform an operation. In this step the CPU decodes

the instructior-, tnn, *", jurt i"tched from memory, to determine which operation

it should Perform.
3. Execute Th. lu,. step in the cycle is to execute' or perform, the operation.

Fis.ure l - l6 i l lustrates these steps'

1.4 How a Prooram Works L5

Figure 1-16 The fetch-decode-execute cycle

..7io.,oooo,
/ .. A Fetch the next instruction

/ \
_-/ in the prosram.

Foiooooil \
10111000 Decode the instruct ion
10011110 n @,:g:: l i :" ,yry:h
00011010 f t oPeration to Perform.
1 1 0 1 1 1 0 0

and so forth.
Execute the instruction
(perform the operation)

From Machine Language to Assembly Language
Computers can only execute programs that are written in machine language. As previously
mentioned, a program can have thousands or even millions of binary instructions, and writ-
ing such a program would be very tedious and time consuming. Programming in machine
language would also be very difficult because putting a 0 or a 1 in the wrong place will
cause an efrof.

Although a computer's CPU only understands machine language, it is impractical for people
to write programs in machine language. For this reason, assembly language was created in
the early days of computingZ as an alternative to machine language. Instead of using binary
numbers for instructions, assembly language uses short words that are known as mnemonics.
For example, in assembly language, the mnemonic add typically rreans to add numbers,
mul typically means to multiply numbers, and mov typically means to move a value to a
Iocation in memory. \7hen a programmer uses assembly language to write a program, he or
she can write short mnemonics instead of binary numbers.

NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an Assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-17.The machine language program that is created by the assembler can
then be executed by the CPU.

z The first assembly language was most likely that developed in the 1940s at Cambridge University
for use with a historic computer known as the EDSAC.

L6 Chapter 1 Introduction to Computers and Programming

Figure ' l - '1 7 An assembler translates an assembly language program to a machine
ranguage program

a d d e a x , 2

m o v Y / e a x

and so forth..,

Assembly language
program

Machine language
program

+ +Assembler

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language
instructions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requires that you know a lot about
the CPU. Assembly language also requires that you write a large number of instructions
for even the simplest program. Because assembly language is so close in nature to machine
language, it is referred to as a low-leuel language.

In the 1950s, a new generation of programming languages known as high-leuel languages
began to appear. A high-level language allows you to create powerful and complex programs
without knowing how the CPU works and without writing large numbers of low-level
instructions. In addition, most high-level languages use words that are easy to understand.
For example, if a programmer were using COBOL (which was one of the early high-level
languages created in the 1950s), he or she would write the following instruction to display
the message Hello world on the computer screen:

DISPLAY "HeI Io wor ld"

Python is a modern, high-level programming language that we will use in this book. In
Python you would display the message Hello world with the following instruction:

p r i n t (' H e 1 1 o w o r l - d ')

Doing the same thing in assembly language would require several instructions and an
intimate knowledge of how the CPU interacts with the computer's output device. As you
can see from this example, high-level languages allow programmers to concentrate on the
tasks they want to perform with their programs rather than the details of how the CPU will
execute those programs.

1 01 00001

10111000

10011110
and so forth...

Since the 1950s, thousands of high-level languages have been created. Table 1-1
of the more well-known languages.

several

Key Words, Operators, and Syntax: An Overview
Each high-level language has its own set of predefined words that the programmer must use
to write a program. The words that make up a high-level programming language are known
as key words or reserued words. Each key word has a specific meaning, and cannot be used
for any other purpose. Table 1-2 shows all of the Python key words.

1.4 How a Program Works t 7

Tab le 1 -1 Programming languages

Language Description

Ada

BASIC

FORTRAN

COBOL

Pascal

C and C++

C#

Java

JavaScript

Python

Ruby

Visual Basic

Ada was created in the 1970s, primarily for applications used by the U.S.

Department of Defense. The language is named in honor of Countess Ada

Lovelace, an influential and historic figure in the field of computing.

Beginners All-purpose Symbolic Instruction Code is a general-purpose language

that was originally designed in the early 1960s to be simple enough for beginners

to learn. Today, there are many different versions of BASIC.

FORmula TRANslator was the first high-level programming language. It was

designed in the 1950s for performing complex mathematical calculations.

Common Business-Oriented Language was created in the 1950s and was designed

for business applications.

Pascal was created in 1,970 and was originally designed for teaching programming.

The language was named in honor of the mathematician, physicist, and philosopher

Blaise Pascal.

c and c++ (pronounced "c plus plus") are powerful, general-purpose languages

developed at Bell Laboratories. The C language was created in 1'972, and the

C++ language was created in 1983'

Pronounced "c sharp." This language was created by Microsoft around the year

2000 for developing applications based on the Microsoft .NET platform.

Java was created by Sun Microsystems in the early 1990s. It can be used to develop

programs that run on a single computer or over the Internet from a web server'

JavaScript, created in the 1990s, can be used in web pages. Despite its name,

JavaScript is not related to Java.

Python, the language we use in this book, is a general-purpose language created

in the early 1,990s.It has become popular in business and academic applications.

Ruby is a general-purpose language that was created in the 1990s. It is increas-

ingly becoming a popular language for programs that run on web servers.

Visual Basic (commonly known as VB) is a Microsoft programming language and

software development environment that allows programmers to create Windows-

based applications quickly. vB was originally created in the early 1990s.

Table 1-2 The Python keY words

and

break

c l a s s

cont inue

def

de1

e l i f

e l s e

excepr

F a l s e

f ina l l y

for

from

globa l

i f

import

in

i s

Iambda

None

non loca l

not

pass

ra ise

return

True

try

whil-e

with

y ie ld

t8 Chapter 1 Introduction to Computers and Programming

In addition to key words, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that
perform arithmetic. In Python, as well as most other languages, the i sign is an operator
that adds two numbers. The following adds 72 and 75:

L 2 + 7 5

There are numerous other operators in the Python language, many of which you will learn
about as you progress through this text.

In addition to key words and operators, each language also has its own syntarc, which is a
set of rules that must be strictly followed when writing a program. The syntax rules dictate
how key words, operators, and various punctuation characters must be used in a program.
\7hen you are learning a programming language, you must learn the syntax rules foi that
particular language.

The individual instructions that you use to write a program in a high-level programming
language are called staternents, A programming statement can consist of kelwoids, oper-
ators' punctuation, and other allowable programming elements, arranged in the proper
sequence to perform an operation.

Compilers and Interpreters
Because the CPU understands only machine language instructions, programs that are writ-
ten in a high-level language must be translated into machine language. Depending on the
language that a program has been written in, the programmer will use either a compiler or
an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separare
machine language program. The machine language program can then be executed any time
it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and executing
are two different processes.

Flgure 1-18 Compil ing a high- level program and execut ing i t

Machine t"ngui"
program

The compiler is used
to translate the high-level
language program to a

machine language program.

The machine language
program can be executed
at any time, without using

the compiler.

High-level language

print ("Hello
Earthling")

and so forth...
*F;l+ffiil

Machine language
program cPU

lffi:l*mI anaso forth...l

,|.4 How a Proqram Works

The Python language uses an interpreter, which is a program that both translates and

executes the instructions in a high-level language program. As the interpreter reads

each individual instruction in the program, it converts it to machine language instruc-

tions and then immediately executes them. This process repeats for every instruction

in the program. This process is i l lustrated in Figure L-1.9. Because interpreters com-

bine translation and execution, they typically do not create separate machine language

programs.

High-level language
program

19

print ("Hello
Earthl ing")

and so forth

'""'l'ffJ:i8,i"n"
t $->l Interpreter E--> 1o1o0oo'1
(*-**J

l

The interpreter translates each high-level instruction to
its equivarentrnac:i:i

:;"o;f,::
instructions and

This process is repeated for each high-level instruction.

The statements that a programmer writes in a high-level language are called source

code, or simply code.Typically, the programmer types a program's code into a text edi-

tor and then saves the code in a fi le on the computer's disk. Next, the programmer uses

a compiler to translate the code into a machine language program, or an interpreter to

translate and execute the code. If the code contains a syntax error, however, it cannot be

translated. A syntax error is a mistake such as a misspelled key word, a rnissing punc-

tuation character, or the incorrect use of an operator. '$7hen this l-rappens the compiler

or in terpreter d isp lays an error message indicat ing that the program conta ins a syntax

error. The programmer corrects the error and ther-r attempts once again to translate the

program.

NOTE: Human languages also have syntax rules. Do you remember when you took

your first Er-rglish class, and you learned all those rules about commas, apostrophes,

capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when

speaking and writing, other people usually understand what they mean. Unfortunatel5

compilers and interpreters do not have this ability. If even a single syntax error appears

in a program, the program cannot be compiled or executed. When an interpreter

encounters a syntax error, it stops executing the program.

20 Chapter 1 Introduction to Computers and programming

ffi"
ffi6p Checkpoint

1.18 A cpu understands instructions that arewritten only in what language?
1'19 A program has to be copied into what type of memory each rime the cpuexecutes it?
7'20 lrhen a cPU executes the instructions in a program, it is engaged in what process?
1.21 What is assembly language?
1'22 what type of programming language-allows you to create powerful and complexprograms without knowing how the CpU works?
1.23 Each language has a ser of rules that musr be strictly foilowed when writing aprogram. What is this set of rules called?
1".24 's7hat do you call a program that translates a highJevel language program into aseparate machine language program?
1'25 what do you call a program that both ffanslates and executes the instructions ina high-level language program?
1'26 what type of mistake is usually caused by a misspelred key word, a missingpunctuation character, or the incorraat ura of

"r,
opar"tor?

, "il_#

