Introduction to Computers
and Programming

1.1 Introduction 1.4 How a Program Works
1.2 Hardware and Software 1.5 Using Python
1.3 How Computers Store Data

Introduction

Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email, and
participating in online classes. At work, people use computers to analyze data, make pre-
sentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people
use computers for tasks such as paying bills, shopping online, communicating with friends
and family, and playing computer games. And don’t forget that cell phones, iPods®, smart
phones, car navigation systems, and many other devices are computers too. The uses of
computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform
a task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers’ work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the
Python language. The Python language is a good choice for beginners because it is easy to learn

Chapter T Introduction to Computers and Programming

Figure 1-1 A word processing program and an image editing program

| 136 whotencodig
fanguagesinthe vld?
7 Whatda the terms “cigits} dats” and “dighs! dosdes” mean?

1.4 Howsa Program Works

Gonomt Acamputer's CPU cumaaly nderstond fostructians thot seeeitten in
maehing i

tomented

abrain, sl s vot wmsst, The
L b Sl

o s ations o phve
at

Click to add notes
L

and programs can be written quickly using it. Python is also a powerful language, popular with
professional software developers. In fact, it is has been reported that Python is used by Google,
NASA, YouTube, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will get a quick
introduction to the software that you will use to write Python programs.

Hardware and Software

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware

The term hardware refers to all of the physical devices, or components, that a computer is made
of. A computer is not one single device, but a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics cards, and
so on. Unless you already know a lot about computers, or at least have a friend that
does, understanding what these different components do might be challenging. As shown in
Figure 1-2, a typical computer system consists of the following major components:

* The central processing unit (CPU)
* Main memory
® Secondary storage devices

1.2 Hardware and Software 3

Figure 1-2 Typical components of a computer system

Central Processing
Unit

Output 3
Devices

_>

Input
Devices

Main Memory
(RAM)

A Secondary
Storage Devices

e Input devices
® Qutput devices

Let’s take a closer look at each of these components.

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical com-
ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two |
women in the photo are working with the historic ENIAC computer. The ENIAC, which :i
is considered by many to be the world’s first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the old
electromechanical CPUs in early computers, microprocessors are also much more powerful.

4 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer (courtesy of U.S. Army Historic Computer Images)

2600 20000 . . |
BO000BOCNO000DOD000
BOGIVOOOND000000 DOV . |
ROOIOOOHOGOBBOOODOG . . .

SOBO0O0NBBOBBB S

Figure

1.2 Hardware and Software

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called
this because the CPU is able to quickly access data stored at any random location in
RAM. RAM is usually a volatile type of memory that is used only for temporary stor-
age while a program is running. When the computer is turned off, the contents of RAM
are erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

1-5 Memory chips (Garsya/Shutterstock)

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a spinning circular disk. Solid-state
drives, which store data in solid-state memory, are increasingly becoming popular. A solid-
state drive has no moving parts and operates faster than a traditional disk drive. Most
computers have some sort of secondary storage device, either a traditional disk drive or a
solid-state drive, mounted inside their case. External storage devices, which connect to one
of the computer’s communication ports, are also available. External storage devices can be
used to create backup copies of important data or to move data to another computer.

In addition to external storage devices, many types of devices have been created for
copying data and for moving it to other computers. For many years floppy disk drives
were popular. A floppy disk drive records data onto a small floppy disk, which can be
removed from the drive. Floppy disks have many disadvantages, however. They hold
only a small amount of data, are slow to access data, and can be unreliable, Floppy
disk drives are rarely used today, in favor of superior devices such as USB drives. USB
drives are small devices that plug into the computer’s USB (universal serial bus) port and

Chapter 1 Introduction to Computers and Programming

appear to the system as a disk drive. These drives do not actually contain a disk, how-
ever. They store data in a special type of memory known as flash memory. USB drives,
which are also known as memory sticks and flash drives, are inexpensive, reliable, and
small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

Input Devices

Input is any data the computer collects from people and from other devices. The component
that collects the data and sends it to the computer is called an input device. Common input
devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk drives and
optical drives can also be considered input devices because programs and data are retrieved
from them and loaded into the computer’s memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be a
sales report, a list of names, or a graphic image. The data is sent to an output device, which
formats and presents it. Common output devices are video displays and printers. Disk
drives and CD recorders can also be considered output devices because the system sends
data to them in order to be saved.

Software

If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on
a computer. The operating system controls the internal operations of the computer’s
hardware, manages all of the devices connected to the computer, allows data to be saved
to and retrieved from storage devices, and allows other programs to run on the computer.
Popular operating systems for laptop and desktop computers include Windows, Mac OS,
and Linux. Popular operating systems for mobile devices include Android and iOS.

1.3 How Computers Store Data

Utility Programs A utility program performs a specialized task that enhances the com-
puter’s operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.

Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and interpret-
ers are examples of programs that fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications: Microsoft Word, a word processing program, and PowerPoint, a
presentation program. Some other examples of application software are spreadsheet pro-
grams, email programs, web browsers, and game programs.

Checkpoint

1.1
1.2
1.3
1.4
1S

1.6

17
1.8
129

1.10

i Ll

What is a program?

What is hardware?

List the five major components of a computer system.
What part of the computer actually runs programs?

What part of the computer serves as a work area to store a program and its data
while the program is running?

What part of the computer holds data for long periods of time, even when there is
no power to the computer?

What part of the computer collects data from people and from other devices?
What part of the computer formats and presents data for people or other devices?

What fundamental set of programs control the internal operations of the
computer’s hardware?

What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of Os

and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

Chapter 1 Introduction to Computers and Programming

Figure

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position. Figure 1-6 shows the way
that a computer scientist might think of a byte of memory: as a collection of switches that
are each flipped to either the on or off position.

1-6 Think of a byte as eight switches

Figure

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern
that represents the data. For example, the pattern on the left in Figure 1-7 shows how the
number 77 would be stored in a byte, and the pattern on the right shows how the letter A
would be stored in a byte. We explain below how these patterns are determined.

1-7 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether the bit
is turned on or off, it can represent one of two different values. In computer systems, a bit
that is turned off represents the number 0 and a bit that is turned on represents the number
1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called) all numeric values are written as sequences of 0Os
and 1s. Here is an example of a number that is written in binary:

10011101

1.3 How Computers Store Data

The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are 2°, 2, 22, 23 and so forth, as shown
in Figure 1-8. Figure 1-9 shows the same diagram with the position values calculated.

Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so
forth.

Figure 1-8 The values of binary digits as powers of 2

100041 108

A A I L
20
L 21
22

Figure 1-9 The values of binary digits

10011101

S

To determine the value of a binary number you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8,
16, and 128. This is shown in Figure 1-10. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

Figure 1-10 Determining the value of 10011101

10011101
A

u1

4
8
1

6

128
1+4+8+16+ 128 =157

10

Chapter 1 Introduction to Computers and Programming
Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each

1 is represented by a bit in the on position, and each 0 is represented by a bit in the off

position.

Figure 1-11 The bit pattern for 157

Position
values

128 + 16 + 8 +4 + 1 =157

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in a byteis 1 +2 + 4 + 8 + 16 +
32 + 64 + 128 = 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 2552 The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 2°, 21, 22, 23, and so forth, up through 21°. As shown
in Figure 1-12, the maximum value that can be stored in two bytes is 65,535. If you need
to store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

Position
values

30768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

"

A

TIP: In case you're feeling overwhelmed by all this, relax! You will not have to actu-
ally convert numbers to binary while programming. Knowing that this process is taking
place inside the computer will help you as you learn, and in the long term this knowl-
edge will make you a better programmer.

1.3 How Computers Store Data

Storing Characters

Any piece of data that is stored in a computer’s memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 635 is stored in memory (as a
binary number, of course). This is shown in Figure 1-13.

1-13 The letter A is stored in memory as the number 65

1

TIP: The acronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and so
forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by
most all computer manufacturers. ASCII is limited, however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can
also represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced Number Storage

Earlier you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as fwo’s complement, and real numbers are encoded in
floating-point notation. You don’t need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

12

Chapter 1T Introduction to Computers and Programming

Figure

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary, and a digital
device is any device that works with binary data. In this section we have discussed how
numbers and characters are stored in binary, but computers also work with many other

types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-14, each pixel in an image is converted to a numeric code
that represents the pixel’s color. The numeric code is stored in memory as a binary number.

1-14 A digital image is stored in binary format

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into, the
more it sounds like the original music when it is played back. A CD quality song is divided
into more than 44,000 samples per second!

Checkpoint
1.12 What amount of memory is enough to store a letter of the alphabet or a small
number?

1.13 What do you call a tiny “switch” that can be set to either on or off?
1.14 In what numbering system are all numeric values written as sequences of Os and 1s?
1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

‘

1.4 How a Program Works 13

Earlier, we stated that the CPU is the most important component in a computer because it is
the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic
device that is designed to do specific things. In particular, the CPU is designed to perform
operations such as the following:

* Reading a piece of data from main memory

* Adding two numbers

* Subtracting one number from another number

* Multiplying two numbers

e Dividing one number by another number

* Moving a piece of data from one memory location to another
* Determining whether one value is equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, and that’s the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific opera-
tion. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of Os and 1s. To a CPU, however, this is an instruction
to perform an operation.! It is written in Os and 1s because CPUs only understand instruc-
tions that are written in machine language, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of perform-
ing. For example, there is an instruction for adding numbers, there is an instruction for
subtracting one number from another, and so forth. The entire set of instructions that a
CPU can execute is known as the CPU’s instruction set.

0 NOTE: There are several microprocessor companies today that manufacture CPUs.

Some of the more well-known microprocessor companies are Intel, AMD, and Motorola.
If you look carefully at your computer, you might find a tag showing a logo for its
MiCroprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micropro-
cessors understand the same instructions, but they do not understand instructions for
Motorola microprocessors.

! The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor
to move a value into the CPU.

14

Chapter 1 Introduction to Computers and Programming

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do any-
thing meaningful. Because the operations that a CPU knows how to perform are so basic in
nature, a meaningful task can be accomplished only if the CPU performs many operations.
For example, if you want your computer to calculate the amount of interest that you will
earn from your savings account this year, the CPU will have to perform a large number of
instructions, carried out in the proper sequence. It is not unusual for a program to contain
thousands or even millions of machine language instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically copied to your computer’s disk
drive from a CD-ROM, or perhaps downloaded from a website.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer’s disk. To
execute the program you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-15.

Figure 1-15 A program is copied into main memory and then executed

Theiplagranilsicopiy 10100001 10111000 10011110

from secondary storage
to main memory.

The CPU executes
the program in
main memory.

Main memory
(RAM)

Disk drive

When a CPU executes the instructions in a program, it is engaged in a process that is known
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for
each instruction in the program. The steps are

1. Fetch A program is a long sequence of machine language instructions. The first
step of the cycle is to fetch, or read, the next instruction from memory into the
CPU.

2. Decode A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step the CPU decodes
the instruction that was just fetched from memory, to determine which operation
it should perform.

3. Execute The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

1.4 How a Program Works 15

Figure 1-16 The fetch-decode-execute cycle

10100001)

Fetch the next instruction

in the program.
10100001
10111000 Decode the instruction
10011110 to determine which
00011010 operation to perform.
11011100
and so forth... CPU

Execute the instruction
(perform the operation).

Main memory
(RAM)

From Machine Language to Assembly Language

Computers can only execute programs that are written in machine language. As previously
mentioned, a program can have thousands or even millions of binary instructions, and writ-
ing such a program would be very tedious and time consuming. Programming in machine
language would also be very difficult because putting a 0 or a 1 in the wrong place will
cause an error.

Although a computer’s CPU only understands machine language, it is impractical for people
to write programs in machine language. For this reason, assembly language was created in
the early days of computing® as an alternative to machine language. Instead of using binary
numbers for instructions, assembly language uses short words that are known as mnemonics.
For example, in assembly language, the mnemonic add typically means to add numbers,
mul typically means to multiply numbers, and mov typically means to move a value to a
location in memory. When a programmer uses assembly language to write a program, he or
she can write short mnemonics instead of binary numbers.

0 NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-17. The machine language program that is created by the assembler can
then be executed by the CPU.

2 The first assembly language was most likely that developed in the 1940s at Cambridge University

for use with a historic computer known as the EDSAC.

16 Chapter 1 Introduction to Computers and Programming

Figure 1-17 An assembler translates an assembly language program to a machine
language program

Assembly language Machine language
program program

mov eax, % 10100001
add eax, 2

. 10111000
TS e | Assembler | mmi—
and so forth... 10011110

and so forth... ‘

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language
instructions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requires that you know a lot about \
the CPU. Assembly language also requires that you write a large number of instructions
for even the simplest program. Because assembly language is so close in nature to machine \
language, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages \
began to appear. A high-level language allows you to create powerful and complex programs ;
without knowing how the CPU works and without writing large numbers of low-level
instructions. In addition, most high-level languages use words that are easy to understand.
For example, if a programmer were using COBOL (which was one of the early high-level ;
languages created in the 1950s), he or she would write the following instruction to display s f
the message Hello world on the computer screen: j

DISPLAY "Hello world"

Python is a modern, high-level programming language that we will use in this book. In
Python you would display the message Hello world with the following instruction:

print('Hello world")

Doing the same thing in assembly language would require several instructions and an
intimate knowledge of how the CPU interacts with the computer’s output device. As you
can see from this example, high-level languages allow programmers to concentrate on the
tasks they want to perform with their programs rather than the details of how the CPU will
execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists several
of the more well-known languages.

Key Words, Operators, and Syntax: An Overview

Each high-level language has its own set of predefined words that the programmer must use
to write a program. The words that make up a high-level programming language are known
as key words or reserved words. Each key word has a specific meaning, and cannot be used
for any other purpose. Table 1-2 shows all of the Python key words.

1.4 How a Program Works

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historic figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language
that was originally designed in the early 1960s to be simple enough for beginners
to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANSlator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s and was designed
for business applications.

Pascal Pascal was created in 1970 and was originally designed for teaching programming.
The language was named in honor of the mathematician, physicist, and philosopher
Blaise Pascal.

Cand C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose languages
developed at Bell Laboratories. The C language was created in 1972, and the
C++ language was created in 1983.

C# Pronounced “c sharp.” This language was created by Microsoft around the year
2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop
programs that run on a single computer or over the Internet from a web server.

JavaScript JavaScript, created in the 1990s, can be used in web pages. Despite its name,
JavaScript is not related to Java.

Python Python, the language we use in this book, is a general-purpose language created
in the early 1990s. It has become popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-

Visual Basic

ingly becoming a popular language for programs that run on web servers.

Visual Basic (commonly known as VB) is a Microsoft programming language and
software development environment that allows programmers to create Windows-
based applications quickly. VB was originally created in the early 1990s.

Table 1-2 The Python key words
and del from None True
as elif global nonlocal try
assert else sLie not while
break except import or with
class False in pass yield
continue finally is raise

def

for lambda return

18

Chapter

©

Cl

1 Introduction to Computers and Programming

In addition to key words, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that
perform arithmetic. In Python, as well as most other languages, the + sign is an operator
that adds two numbers. The following adds 12 and 75:

1.2 -ea /i5,

There are numerous other operators in the Python language, many of which you will learn
about as you progress through this text.

In addition to key words and operators, each language also has its own syntax, which is a
set of rules that must be strictly followed when writing a program. The syntax rules dictate
how key words, operators, and various punctuation characters must be used in a program.
When you are learning a programming language, you must learn the syntax rules for that
particular language.

The individual instructions that you use to write a program in a high-level programming
language are called statements. A programming statement can consist of key words, oper-
ators, punctuation, and other allowable programming elements, arranged in the proper
sequence to perform an operation.

Because the CPU understands only machine language instructions, programs that are writ-
ten in a high-level language must be translated into machine language. Depending on the
language that a program has been written in, the programmer will use either a compiler or
an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate
machine language program. The machine language program can then be executed any time
it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and executing
are two different processes.

High-level language Machine language
program RIeora
The compiler is used print ("Hello 10100001
to translate the high-level ingt 10111000
g Earthling") Compiler
language program to a 10011110
machine language program. and so forth... and so forth...

Machine language

program

The machine language 10100001

program can be executed 10111000

at any time, without using 10011110
e compllel; and so forth...

1.4 How a Program Works 19

The Python language uses an interpreter, which is a program that both translates and
executes the instructions in a high-level language program. As the interpreter reads
each individual instruction in the program, it converts it to machine language instruc-
tions and then immediately executes them. This process repeats for every instruction
in the program. This process is illustrated in Figure 1-19. Because interpreters com-
bine translation and execution, they typically do not create separate machine language
programs.

Figure 1-19 Executing a high-level program with an interpreter

High-level language

CPU
program Machine language
rint ("Hello instruction
Earth(ling") —| Interpreter —»= 10100001 —

and so forth...

The interpreter translates each high-level instruction to
its equivalent machine language instructions and
immediately executes them.

This process is repeated for each high-level instruction.

The statements that a programmer writes in a high-level language are called source
code, or simply code. Typically, the programmer types a program’s code into a text edi-
tor and then saves the code in a file on the computer’s disk. Next, the programmer uses
a compiler to translate the code into a machine language program, or an interpreter to
translate and execute the code. If the code contains a syntax error, however, it cannot be
translated. A syntax error is a mistake such as a misspelled key word, a missing punc-
tuation character, or the incorrect use of an operator. When this happens the compiler
or interpreter displays an error message indicating that the program contains a syntax
error. The programmer corrects the error and then attempts once again to translate the
program.

0 NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class, and you learned all those rules about commas, apostrophes,
capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortunately,
compilers and interpreters do not have this ability. If even a single syntax error appears
in a program, the program cannot be compiled or executed. When an interpreter
encounters a syntax error, it stops executing the program.

1918
1418

1L.2(0)
il 2l
1.22

1223

1.24

1825

1.26

Checkpoint

A CPU understands instructions that are written only in what language?

A program has to be copied into what type of memory each time the CPU
executes it?

When a CPU executes the instructions in a program, it is engaged in what process?
What is assembly language?

What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

What do you call a program that translates a high-level language program into a
separate machine language program?

What do you call a program that both translates and executes the instructions in
a high-level language program?

What type of mistake is usually caused by a misspelled key word, a missing
punctuation character, or the incorrect use of an operator?

