
FINAL CHAPTER
Web Applications

1

WEB PROGRAMS

 The programs in this chapter require the use of

either Visual Web Developer 2010 (packaged with

this textbook) or the complete version of Visual

Studio 2010.

 We assume that you are using one of these two

software products.

2

CREATING A WEB PROGRAM

 Click on New Web Site in the File menu.

 Select Visual Basic in the left pane.

 Select ASP.NET Web Site in the middle pane.

 Select File System as the Web location.

 Give a name and path for the program.

 Click on the OK button.

3

CREATING A WEB PROGRAM (CONTINUED)

4

enter name

click on OK

WEB PAGE (VWD EQUIVALENT OF THE

FORM DESIGNER)

5

Main Content

region

Web page tab

WEB PAGE TAB

 The Web page tab is titled Default.aspx instead of

Form1. vb [Design]

 The Web page is referred to as Default.aspx in the

Solution Explorer window

6

TOOLBOX

7

The common controls, such as button, text

box, and list box are contained in the

Standard group of the Toolbox.

DESIGNING THE WEB PAGE

 Begin by clearing the Main Content region

 Permanent text (called static text) can be typed

into the page and formatted directly without the

use of labels

 Text boxes and buttons can be placed at the

cursor position (called the insertion point) by

double-clicking on them in the Toolbox

8

SAMPLE WEB PAGE

9

PROPERTIES WINDOW

10

The name of a control is specified by the

ID property instead of the Name property

CODE EDITOR

 The Code Editor tab reads Default.aspx.vb instead

of Form1.vb

 The code in the editor is referred to as the code

behind.

11

SUMMARY THUS FAR

12

SAMPLE CODE

Protected Sub btnCalculate_Click(...) Handles _

btnCalculate.Click

 Dim cost As Double = CDbl(txtCost.Text)

 Dim percent As Double =

 CDbl(txtPercent.Text) / 100

 txtTip.Text = FormatCurrency(percent * cost)

End Sub

Notice that “Sub” is proceeded by “Protected” instead of “Private”.

13

RUNNING A PROGRAM

 Press Ctrl+F5 to run program without debugging

 Program runs in the computer’s Web browser

 To terminate the program, close the browser by

clicking on , the Close button

 Close program by clicking on Close Project in the

File menu.

14

A RUN OF THE SAMPLE PROGRAM

15

TABLES

 A table control can be used to improve the

layout of a Web page

 Tables are created with the Insert Table command

from the Table menu in the Toolbar

16

SAMPLE TABLE

17

This table has 5 rows and 2 columns. Each

subdivision is called a cell.

cell

CELLS

 Text and controls can be placed into cells

 The alignment (such as right, left, or center) of the

contents of a cell can be specified with the Align

property from the Properties window

 Commands from the Table menu allow you to

insert and delete rows and columns, and to merge

cells

18

MANAGING TABLES

 Assorted arrows can be used to highlight groups of

cells and resize tables

 Dragging of the cursor also can be used to

highlight groups of cells

 19

TEXT FILES

 Normally placed in the Solution Explorer’s

App_Data folder

 A text file can be read into an array with a

statement of the form

Dim strArrayName() As String =

 IO.File.ReadAllLines(MapPath("App_Data\" &

 filename))

20

HOW TO OPEN AN EXISTING WEB PROGRAM

21

first click

here

Then navigate to the program’s folder

and click on the Open button.

HOW TO ADD AN ADDITIONAL WEB PAGE TO

A PROGRAM

 Click on an existing Web page to

make sure it has the focus

 Click on Add New Item in the

Website menu. (An Add New Item

dialog box will appear.)

 Select Web Form in the center

pane, type a name into the Name

box, and click on the Add button.

22

HOW TO ADD AN ADDITIONAL WEB PAGE TO

A PROGRAM (CONT.)

23

select

click on

Add button

change

name

HYPERLINK CONTROL

 Found in the General group of the Toolbox

 Appears on a page as underlined text

 Used to navigate to another page

 NavigateUrl property specifies the page to

navigate to

24

SAMPLE WEB PAGE

25

hyperlink control

VALIDATION CONTROLS

 Used to validate user input

 The RequiredFieldValidator control checks

that data has been entered into a text box or that

an item of a list box has been selected

 The RangeValidator control

checks that the entry in a text

box falls within a specified

range of values.

26

SAMPLE WEB PAGE

27

RequiredFieldValidator

RangeValidator

Validation controls are not visible at run time.

Only appear when input is missing or invalid.

REQUIREDFIELDVALIDATOR CONTROL

 The key properties are ControlToVerify

and ErrorMessage

 The ErrorMessage setting is the text

that appears when input into the

specified control does not meet the given

criteria

28

RANGEVALIDATOR CONTROL

 The key properties are ControlToVerify,

ErrorMessage, Type, MinimumValue,

and MaximumValue

 Possible settings for Type are String,

Integer, Double, Date, and Currency

 The entry in the text box must lie between

the MinimumValue and the

MaximumValue

29

POSTBACK

 A postback occurs when the contents of a Web

page are sent to the server for processing.

Afterwards, the server sends a new page back to

the browser

 When a validation control is triggered, the matter

is handled entirely by the browser—no postback

occurs

30

PROGRAMMING MODEL

THE PAGE LOAD EVENT

 Raised when a Web page is first loaded and every

time it is reloaded after a postback

 The IsPostBack property can be used to guarantee

that the page load event is raised only once
if Not Page.IsPostBack Then

…

End if

32

CLASS-LEVEL VARIABLES

 In VWD, class-level variables are of limited value

since they do not retain their values after

postbacks

 Devices known as cookies or session variables can

be used to retain values

33

RADIOBUTTONLIST CONTROL

34

rblAges
rfvAge

VWD does not have a group box control. The

radio-button list control is the counterpart of the

VB group box containing a set of radio buttons.

RADIOBUTTONLIST CONTROL (CONTINUED)

 The radio-button list control is populated via a

ListItem Collection Editor that is invoked from

the Tasks button

 In the previous slide, the control rfvAge, a

RequiredFieldValidator, guarantees that a radio

button has been selected before the button is

clicked on.

35

CHECK BOX CONTROL

36

Example 5 of

Section 4.4.

• In regular VB clicking on a check-box can cause code to run

• VWD does not do this

• To convert this VB program to a VWD program, the

AutoPostBack property of each check box must be set to

True

REVIEW
Chapter 1

38

COMMUNICATING WITH THE COMPUTER

 Machine language – low level, hard for humans to

understand

 Visual Basic – high level, understood by humans,

consists of instructions such as Click, If, Do

 Usable in other applications (Word, Excel…)

39

COMPUTERS AND COMPLICATED TASKS

 Tasks are broken down into instructions that can

be expressed by a computer language

 A program is a sequence of instructions

 Programs can be only a few instructions or

millions of lines of instructions

40

PERFORMING A TASK ON THE COMPUTER

 Determine Output

 Identify Input

 Determine process necessary to turn given Input

into desired Output

41

PROBLEM-SOLVING: APPROACH LIKE

ALGEBRA CLASS

 How fast is a car traveling if it goes 50 miles in 2

hours?

 Output:

 Input:

 Process:

42

PROGRAM DEVELOPMENT CYCLE

1. Analyze: Define the problem.

2. Design: Plan the solution to the

problem.

3. Choose the interface: Select the objects

(text boxes, buttons, etc.).

4. Code: Translate the algorithm into a
programming language.

5. Test and debug: Locate and remove any
errors in the program.

6. Complete the documentation:
Organize all the materials that describe
the program.

43

PROGRAMMING TOOLS

 Three tools are used to convert algorithms into
computer programs:

 Flowchart - Graphically depicts the logical steps to

carry out a task and shows how the steps relate to each
other

 Pseudocode - Uses English-like phrases with some
Visual Basic terms to outline the program

 Hierarchy chart - Shows how the different parts of a
program relate to each other

44

FLOWCHART EXAMPLE

C

h
a

p
te

r 1

45

PSEUDOCODE EXAMPLE

Determine the proper number of stamps

for a letter

Read Sheets (input)

Set the number of stamps to Sheets / 5

(processing)

Round the number of stamps up to the

next whole number (processing)

Display the number of stamps (output)

46

HIERARCHY CHARTS EXAMPLE

C

h
a

p
te

r 1

47

DECISION FLOW CHART

C

h
a

p
te

r 1

48

LOOPING FLOW CHART

49

REVIEW
Chapter 2&3

50

CONTROL NAME PREFIXES

Control Prefix Example

button btn btnCompute

label lbl lblAddress

text box txt txtAddress

list box lst lstOutput

Chapter 2 51

EVENT

 An event is an action, such as the user clicking on

a button

 Usually, nothing happens in a Visual Basic

program until the user does something and

generates an event.

 What happens is determined by statements.

52

THREE TYPES OF ERRORS

 Syntax error

 Run-time error

 Logic error

53

SOME TYPES OF SYNTAX ERRORS

 Misspellings

 lstBox.Itms.Add(3)

 Omissions

 lstBox.Items.Add(2 +)

 Incorrect punctuation

 Dim m; n As Integer

Displayed as blue underline in VS

54

SYNTAX ERROR

The following is NOT a valid way to test if n falls

between 2 and 5:

(2 < n < 5)

55

A TYPE OF RUN-TIME ERROR

Dim numVar As Integer = 1000000

numVar = numVar * numVar

What’s wrong with the above?

56

A LOGICAL ERROR

Dim average As Double

Dim m As Double = 5

Dim n As Double = 10

average = m + n / 2

What’s wrong with the above?

Value of average will be 10. Should be 7.5.

57

COMMON ERROR IN BOOLEAN EXPRESSIONS

 A common error is to replace the condition Not (

2 < 3) with the condition (2 > 3)

58

DATA CONVERSION

 Because the contents of a text box is always a

string, sometimes you must convert the input or

output.

 dblVar = CDbl(txtBox.Text)

 txtBox.Text = CStr(numVar)

59

Converts a String to a Double

Converts a number to a string

STRING PROPERTIES AND METHODS

"Visual".ToUpper is VISUAL.

.ToUpper makes everything upper case.

Varname = “blah”

Varname.ToUpper  “BLAH”

60

STRING PROPERTIES AND METHODS

"a" & " bcd ".Trim & "efg" is “abcdefg”

.trim removes leading/trailing spaces

Varname = “ blah “

Varname.trim  “blah”

61

SUBSTRING METHOD

Let str be a string.

str.Substring(m, n) is the substring of

length n, beginning at position m in str.

“Visual Basic”.Substring(2, 3) is “sua”

“Visual Basic”.Substring(0, 1) is “V”

62

CHR FUNCTION

For n between 0 and 255,

 Chr(n)

is the string consisting of the character with

ASCII value n.

EXAMPLES: Chr(65) is "A"

 Chr(162) is "¢"

63

ASC FUNCTION

For a string str,

 Asc(str)

is ASCII value of the first character of str.

EXAMPLES: Asc("A") is 65

 Asc("¢25") is 162

64

SCOPE

 The scope of a variable is the portion of the

program that can refer to it

 Variables declared inside an event procedure are

said to have local scope and are only available in

the event procedure in which they are declared

65

SCOPE

 Variables declared outside an event procedure are

said to have class-level scope and are available

to every event procedure

 Usually declared after

 Public Class formName

 (Declarations section of Code Editor.)

66

REVIEW
Chapter 4

67

LOGICAL OPERATORS

 Used with Boolean expressions

 Not – makes a False expression True and vice versa

 And – will yield a True if and only if both expressions

are True

 Or – will yield a True if at least one of both

expressions are True

68

EXAMPLE 4.3

n = 4, answ = “Y”

Are the following expressions true or false?

1) Not (n < 6)

2) (answ = "Y") Or (answ = "y")

3) (answ = "Y") And (answ = "y")

4) Not(answ = "y")

69

IF BLOCK

The program will take a course of action

based on whether a condition is true.

If condition Then

 action1

Else

 action2

End If

70

Will be executed if

condition is true

Will be executed if

condition is false

ANOTHER EXAMPLE IF BLOCK

If condition Then

 action1

End If

Statement2

Statement3

71

Regardless of whether

the condition in the

If statement is true or

 alse, these statements

will be executed

PSEUDOCODE AND FLOWCHART

C

h
a

p
te

r 4
 - V

B
 2

0
0

8
 b

y
 S

c
h

n
e

id
e

r

72

ELSEIF CLAUSE

If condition1 Then

 action1

ElseIf condition2 Then

 action2

ElseIf condition3 Then

 action3

Else

 action4

End If

73

SELECT CASE SYNTAX

The general form of the Select Case block is

Select Case selector

 Case valueList1

 action1

 Case valueList2

 action2

 Case Else

 action of last resort

End Select

74

FLOWCHART FOR SELECT CASE

75

FLOWCHART FOR SELECT CASE

 (not in book, but equivalent)

76

REVIEW
Chapter 5

77

DEVICES FOR MODULARITY

 Visual Basic has two devices for breaking

problems into smaller pieces:

 Sub procedures

 Function procedures

78

SUB PROCEDURES

 Perform one or more related tasks

 General syntax

Sub ProcedureName()

 statements

End Sub

79

ARGUMENTS AND PARAMETERS

 Sum(2, 3)

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

80

arguments

parameters

displayed

automatically

FUNCTION PROCEDURES

 Function procedures (aka user-defined functions)
always return one value

 Syntax:

Function FunctionName(ByVal var1 As Type1, _

 ByVal var2 As Type2, _

 …) As dataType

 statement(s)

 Return expression

End Function

81

FUNCTIONS VS. PROCEDURES

 Both can perform similar tasks

 Both can call other subs and functions

 Use a function when you want to return one and

only one value

82

EXAMPLE: NUM

83

Public Sub btnOne_Click (...) Handles _

 btnOne.Click

 Dim num As Double = 4

 Triple(num)

 txtBox.Text = CStr(num)

End Sub

Sub Triple(ByVal num As Double)

 num = 3 * num

End Sub

Output: 4

EXAMPLE

84

Public Sub btnOne_Click (...) Handles _

 btnOne.Click

 Dim num As Double = 4

 Triple(num)

 txtBox.Text = CStr(num)

End Sub

Sub Triple(ByRef num As Double)

 num = 3 * num

End Sub

Output: 12

REVIEW
Chapter 6

85

DO LOOP SYNTAX

Do While condition

 statement(s)

Loop

86

Condition is tested,

If it is true,

the loop is run.

If it is false,

the statements

following the

Loop statement

are executed.

These statements are inside

the body of the loop and

are run if the condition

above is true.

POST TEST LOOP

Do

 statement(s)

Loop Until condition

87

Loop is executed once and then the condition

is tested. If it is false, the loop is run again.

If it is frue, the statements following the

 Loop statement are executed.

WHAT’S THE DIFF?

88

Do

 statement(s)

Loop Until condition

Do While condition

 statement(s)

Loop

What’s the

difference

between a

Do Until

and

Do While?

PSEUDOCODE AND FLOWCHART

89

EXAMPLE 1: DISPLAY THE TOTAL

CONTENTS OF A FILE

Dim sr As IO.StreamReader = _

IO.File.OpenText("PHONE.TXT")

lstNumbers.Items.Clear()

Do While sr.Peek <> -1

 name = sr.ReadLine

 phoneNum = sr.ReadLine

 lstNumbers.Items.Add(name & " " _

 & phoneNum)

Loop

sr.Close() 90

FOR…NEXT LOOP SYNTAX

C
h

a
p

te
r 6

91

EXAMPLE 2

For i As Integer = 0 To n Step s

 lstValues.Items.Add(i)

Next

92

Control

variable

Start

value
Stop

value

Amount

to add to

i

Data

type

COMMENTS

 The value of the control variable should not be

altered within the body of the loop (For ... Next).

 To skip an iteration in a For .. Next loop:

Continue For

 To skip an iteration in a Do .. While loop:

 Continue Do

93

COMMENTS

For i As Integer = 1 To 5

 (some statements)

 Continue For

 (some statements)

Next

94

What will happen?

COMMENTS

 To break out of a For .. Next loop:

Exit For

 To break out of a Do .. While loop:

 Exit Do

95

REVIEW
Chapter 7

96

SIMPLE AND ARRAY VARIABLES

 A variable (or simple variable) is a name to

which Visual Basic can assign a single value

 An array variable is a collection of simple

variables of the same type to which Visual Basic

can efficiently assign a list of values

97

INITIALIZING ARRAYS

Arrays may be initialized when they are created:

Dim arrayName() As varType = {value0, _

 value1, value2, ..., valueN}

For Ex:

Dim Students() As String = {"Jack",
 "John", "Julie", "Jimmy", "Janet"}

 98

INITIALIZING ARRAYS

Arrays may be initialized when they are

created:

Dim arrayName() As varType =

IO.File.ReadAllLines(filespec)

Opens filespec, reads all lines from it, and

stores it in arrayName

Each line in filespec is stored in one

location of arrayName

 99

EXAMPLE

Dim Grades() As integer = {70, 75, 80, 85, 90}

Grades.Average  80

Grades.Count  5

Grades.Min  70

Grades.Max  90

Grades.Sum  400

100

PRESERVE KEYWORD

 ReDim arrayName(m) resets all values to

their default. This can be prevented with the

keyword Preserve.

 ReDim Preserve arrayName(m)

resizes the array and retains as many

values as possible.

101

SET OPERATIONS

 Concat

 Contains elements of array1 and array2

 Duplication is OK

Dim States1() As String = {"A", "B", "C", "D"}

Dim States2() As String = {"E", "F", "G", "H"}

Dim States3() As String = _
 States1.Concat(States2).ToArray()

102

SET OPERATIONS

 Union

 Contains elements of array1 and array2

 No Duplication

Dim States1() As String = {"A", "B", "C", "D"}

Dim States2() As String = {"E", "F", "G", "H"}

Dim States3() As String = _
 States1.Union(States2).ToArray()

103

SET OPERATIONS

 Intersect

 Contains elements from array1 and array2 which

exist in both array1 and array2

Dim States1() As String = {"A", "B", "C", "D"}

Dim States2() As String = {"E", "F", "G", "H"}

Dim States3() As String = _
 States1.Intersect(States2).ToArray()

104

SET OPERATIONS

 Except

 Contains elements from array1 which do not exist in

array2

Dim States1() As String = {"A", "B", "C", "D"}

Dim States2() As String = {"E", "F", "G", "H"}

Dim States3() As String = _
 States1.Except(States2).ToArray()

105

STRUCTURES

A way of grouping heterogeneous data

together

Also called a UDT (User Defined Type)

Sample structure definition:

Structure College

 Dim name As String

 Dim state As String

 Dim yearFounded As Integer

End Structure

106

EXAMPLE 4

Structure FullName

 Dim firstName As String

 Dim lastName As String

End Structure

Structure Student

 Dim name As FullName

 Dim credits() As Integer

End Structure

107

Structure "FullName"

contained, or nested,

inside Student

SORTING

Sorting is an algorithm for ordering an

array.

We discuss two sorting algorithms:

 bubble sort

 Shell sort

Both use the swap algorithm:

temp = varl

varl = var2

var2 = temp

108

BUBBLE SORT ALGORITHM: N ITEMS

1. Compare the first and second items. If they are
out of order, swap them.

2. Compare the second and third items. If they are
out of order, swap them.

3. Repeat this pattern for all remaining pairs. The
final comparison and possible swap are between
the next-to-last and last items.

4. The last item will be at its proper place.

5. Do another pass through first n – 1 items.

6. Repeat this process with one less item for each

pass until a pass uses only the first and second

items.

 109

SHELL SORT ALGORITHM

1. Begin with a gap of g = Int(n/2)

2. Compare items 0 and g, 1 and 1 + g, . . .,

n - g and n. Swap any pairs that are out

of order.

3. Repeat Step 2 until no swaps are made

for gap g.

4. Halve the value of g.

5. Repeat Steps 2, 3, and 4 until the value

of g is 0.

110

REVIEW

Array Elements Bubble Sort

Comparisons

Shell Sort

Comparisons

5 10 17

10 45 57

15 105 115

20 190 192

25 300 302

30 435 364

50 1225 926

100 4950 2638

500 124,750 22,517

1000 499,500 58,460

Efficiency of Bubble and Shell Sorts

REVIEW

 Efficiency of Sequential and Binary Search

Array Elements

Sequential Search

Comparisons

Binary Search

Comparisons

2000

1000 (Average)

11 (At most)

REVIEW
Chapter 8

113

REVIEW

name = input.Substring(0, (input.IndexOf(",")))

Input = “James,88”

0

1

2

3

4

5

6

7

J

a

m

e

s

,

8

8

WRITEALLLINES

IO.File.WriteAllLines _
 ("fileName.txt", States)

 Creates a new text file

 Copies the contents of a string array

 Places one element on each line

 Close the file

115

REALALLLINES

Read all the lines of a text-file into an

array

 Method opens a file

 Reads each line of the file

 Adds each line as an element of a string array

 Closes the file

A line is defined as a sequence of

characters followed

 carriage return

 a line feed

 a carriage return followed by a line feed

116

DELETING INFORMATION FROM A

SEQUENTIAL FILE

An individual item of a file cannot be

changed or deleted directly.

A new file must be created by reading each

item from the original file and recording it,

with the single item changed or deleted,

into the new file.

The old file is then erased, and the new file

renamed with the name of the original file.

117

DELETE AND MOVE METHODS

 Delete method:

IO.File.Delete(filespec)

 Move method (to change the filespec of a file):

IO.File.Move(oldfilespec,

newfilespec)

 Note: The IO.File.Delete and IO.File.Move
methods cannot be used with open files.

118

STRUCTURED EXCEPTION HANDLING

 Two types of problems in code:

 Bugs (logic error) – something wrong with the code
the programmer has written

 Exceptions – errors beyond the control of the
programmer

 Programmer can use the debugger to find bugs;
but must anticipate exceptions in order to be able
to keep the program from terminating abruptly.

119

TRY CATCH BLOCK SYNTAX

Try

 normal code

Catch exc1 As FirstException

 exception-handling code for FirstException

Catch exc2 As SecondException

 exception-handling code for SecondException

.

.

Catch

 exception-handling code for any remaining

exceptions

Finally

 clean-up code

End Try
120

CATCH BLOCKS

Visual Basic allows Try-Catch-Finally
blocks to have one or more specialized
Catch clauses that only trap a specific type
of exception

The general form of a specialized Catch
clause is

 Catch exp As ExceptionName

where the variable exp will be assigned
the name of the exception. The code in this
block will be executed only when the
specified exception occurs.

121

WORKING WITH HASHTABLE

Arrays can store only one data type

 collections can hold any objects

Accessing the element is very simple and

very fast

Removing the element in Collection is very

simple

122

WORKING WITH HASHTABLE

 Array:

 MyArray(100) returns element 100

 What if I want element “George”?

 Hashtable

 MyHash.Item(“George”)

123

WORKING WITH HASHTABLE

 Adding an element to the HashTable

 {hash table object}.Add(Key as Object, value as

Object)

 Ex: MyHash.Add(“George”, 45)

124

WORKING WITH HASHTABLE

 Accessing an element

{hash table object}.Item({key})

Ex: MyArray.Item(“George”)

125

WORKING WITH HASHTABLE

 Searching for an element

 {hash table object}.Contains({key})

Ex: MyArray.Contains(“George”)

126

REVIEW
Chapter 9

127

LIST BOX EVENTS

Three main types of events with list boxes:

1. Click – the user clicks on an item in the list box

2. SelectedIndexChanged - the user clicks on an
item or uses the arrow keys to select it

3. DoubleClick - the user double-clicks on an item

All three events are triggered when the user double-
clicks on an item.

128

USING AN ARRAY TO FILL A LIST BOX

The statement

 lstBox.DataSource = arrayName

fills the list box with the elements of the

array.

129

THE GROUP BOX CONTROL

 Group boxes are passive objects used to group

other objects together

 When you drag a group box, the attached controls

follow as a unit

 To attach a control to a group box, create the

group box, then drag the control you want to

attach into the group box.

130

THE CHECK BOX CONTROL

Consists of a small square and a caption

Presents the user with a Yes/No choice

During run time, clicking on the check box
toggles the appearance of a check mark

Checked property is True when the check
box is checked and False when it is not

CheckedChanged event is triggered when
the user clicks on the check box

131

THE RADIO BUTTON CONTROL

 Consists of a small circle with a caption (that is
set by the Text property)

 Normally several radio buttons are attached to a
group box

 Gives the user a single choice from several options

 Clicking on one radio button removes the selection
from another

132

THE TIMER CONTROL

 Invisible during run time

 Triggers an event after a specified period of time

 The Interval property specifies the time period –
measured in milliseconds

 To begin timing, set the Enabled property to True

 To stop timing, set the Enabled property to False

 The event triggered each time Timer1.Interval
elapses is called Timer1.Tick 133

SCROLL BAR PROPERTIES

The main properties of a scroll bar control

are

 Minimum

 Maximum

 Value

 SmallChange,

 LargeChange

hsbBar.Value, a number between

hsbBar.Minimum and hsbBar.Maximum,

gives the location of the scroll box,
134

THE CLIPBOARD OBJECT

 Used to copy information from one place to

another

 Maintained by Windows, so it can even be used

with programs outside Visual Basic

 A portion of memory that has no properties or

events

135

THE RANDOM CLASS

 A random number generator declared with the
statement:

 Dim randomNum As New Random()

 If m and n are whole numbers and m < n then the
following generates a whole number between m
and n (including m, but excluding n)

 randomNum.Next(m, n)

136

THE MENUSTRIP CONTROL

137

Used to create menus like the following:

Top-level menu

Second-level menu

MENU EVENTS

 Each menu item responds to the Click event

 Click event is triggered by

 the mouse

 Alt + access key

 Shortcut key

138

MULTIPLE FORMS

 Visual Basic programs can contain more than one

form

 To add the new form, select Add Windows Form

from the Project menu, to invoke the Add New

Items dialog box.

139

VARIABLES AND MULTIPLE FORMS

 Variables declared in the Declarations section of a
form with Public, instead of Dim, will be available
to all forms in the program

 When a Public variable is used in another form, it
is referred to by an expression such as

 secondForm.variableName

140

REVIEW
Chapter 10

141

WHAT IS A DATABASE?

A database (DB) is a very large,
integrated, permanent collection of data

Models real-world
 Entities (e.g., students, courses)

 Relationships (e.g., Madonna is taking
CMPT354)

Example databases:
 Customer Transactions

 Human Genome

 Online Bookstore

 . . .

DATABASE TERMINOLOGY

 A table is a rectangular array of data

 Each column of the table, called a field, contains

the same type of information

 Each row, called a record, contains all the

information about one entry in the database

143

CONNECTING WITH A DATATABLE

Dim dt As New DataTable()

Dim connStr As String = _

 "Provider=Microsoft.Jet.OLEDB.4.0;" & _

 "Data Source=MEGACITIES.MDB"

Dim sqlStr As String = "SELECT * FROM Cities"

Dim dataAdapter As New _

 OleDb.OleDbDataAdapter(sqlStr, connStr)

dataAdapter.Fill(dt)

dataAdapter.Dispose()

144

(Boilerplate to be inserted into every program in chapter.)

PRIMARY KEYS

 A primary key is used to uniquely identify each

record

 Databases of student enrollments in a college

usually use a field of Social Security numbers as

the primary key

 Why wouldn't names be a good choice as a

primary key?

145

TWO OR MORE TABLES

When a database contains two or more
tables, the tables are usually related

For instance, the two tables Cities and
Countries are related by their country field

Notice that every entry in Cities.country
appears uniquely in Countries.country and
Countries.country is a primary key

We say that Cities.country is a foreign
key of Countries.country 146

SQL

 Structured Query Language developed for use

with relational databases

 Very powerful language

 Allows for the request of specified information

from a database

 Allows displaying of information from database in

a specific format

147

VIRTUAL TABLES

SQL statements create a new “virtual”

table from existing tables

SELECT city, pop2015 FROM Cities

WHERE pop2015>=20

Results in “virtual” table

148

city pop2015

Bombay 22.6

Delhi 20.9

Mexico City 20.6

Sao Paulo 20.0

Tokyo 36.2

REVIEW
Chapter 11

149

WHAT IS OBJECT ORIENTED

PROGRAMMING?

An object is like a black box.

 The internal details are hidden.

• Identifying objects and assigning responsibilities to

these objects.

• Objects communicate to other objects by sending

messages.

• Messages are received by the methods of an object 150

OOP ANALOGY

Classes

Methods

Properties

151

noun A word used to denote or

name a person, place, thing,

quality, or act.

verb That part of speech that

expresses existence, action, or

occurrence.

adjective Any of a class of

words used to modify a noun or

other substantive by limiting,

qualifying, or specifying.

GET AND SET

Private m_name As String

Public Property Name() As String

 Get

 Return m_name

 End Get

 Set(ByVal value As String)

 m_name = value

 End Set

End Property

152

Property

block

STUDENT CLASS: WRITEONLY

PROPERTY BLOCKS

Public WriteOnly Property Midterm() As Double

 Set(ByVal value As String)

 m_midterm = value

 End Set

End Property

Public WriteOnly Property Final() As Double

 Set(ByVal value As String)

 m_final = value

 End Set

End Property

153

STUDENT CLASS: METHOD

Function CalcSemGrade() As String

 Dim grade As Double

 grade = (m_midterm + m_final) / 2

 grade = Math.Round(grade)

 Select Case grade

 Case Is >= 90

 Return "A"

 Case Is >= 80

 Return "B"

:

End Function

154

STEPS USED TO CREATE A CLASS

1. Identify a thing in your program that is to
become an object

2. Determine the properties and methods that you
would like the object to have. (As a rule of
thumb, properties should access data, and
methods should perform operations.)

3. A class will serve as a template for the object.
The code for the class is placed in a class block
of the form

 Class ClassName

 statements

 End Class 155

STEPS CONTINUED

4. For each of the properties in Step 2, declare a

private member variable with a statement of the

form

 Private m_variableName As DataType

5. For each of the member variables in Step 4,

create a Property block with Get and/or Set

procedures to retrieve and assign values of the

variable.

6. For each method in Step 2, create a Sub

procedure or Function procedure to carry out

the task.
156

EVENTS

 User-defined events can be created for classes.

 The statement for triggering an event is located in

the class block

 The event is dealt with in the form’s code.

157

USER DEFINED EVENT

 Suppose that the event is named UserDefinedEvent and
has the parameters par1, par2, and so on.

 In the class block, place the following statement in the
Declarations section

Public Event UserDefinedEvent(ByVal par1 As _

 DataType1, ByVal par2 As DataType2, ...)

 The next statement should be placed at the locations in
the class block code at which the event should be
triggered

RaiseEvent UserDefinedEvent(arg1, arg2, ...)
158

RESPONDING TO EVENTS

 When declaring an object variable, the keyword

WithEvents must be added so that the object will respond

to events:

 Dim WithEvents object1 As ClassName

 The declaration line of an event procedure would be

Private Sub object1_UserDefinedEvent(ByVal par1 As _

 DataType1, ...) Handles object1.UserDefinedEvent

159

CONTAINMENT

 Class A contains class B when a member

variable of class A is an object of type class B.

 Class DeckOfCards

 Private m_deck(51) As Card

 'Class DeckOfCards contains class

Card

160

INHERITANCE HIERARCHY

 GrandChild1 has access to Property A, Sub B, and

Event C from its parent and adds Function E and

Sub F

161

OVERRIDABLE

The keyword Overridable is used to
designate the parent’s methods that are
overridden, and the keyword Overrides
is used to designate the child’s methods
that are doing the overriding

There are situations where a child class's
needs to access the parent class’s
implementation of a method that the child
is overriding. Visual Basic provides the
keyword MyBase to support this
functionality

162

MUSTOVERRIDE

 Sometimes you want to insist that each child of a
class have a certain property or method that it
must implement for its own use

 Such a property or method is said to be abstract
and is declared with the keyword MustOverride

163

 Good luck!

