
SQL

 SELECT fields

 FROM table

 WHERE search condition

 GROUP BY grouping_columns

 HAVING search_condition

 ORDER BY sort_fields

SQL

 SELECT *

 SELECT Architecture

 SELECT Architecture, Agriculture, Social

SQL

 FROM Education

 FROM Education, Lookup

 FROM Cities, Countries

 FROM Cities INNER JOIN Countries ON

Cities.country = Countries.country

SQL

 WHERE country = ‘India’

 WHERE pop2015 >= 20

 WHERE city LIKE ‘D%’

 WHERE Information < 400

 WHERE monetaryUnit LIKE ‘_U%’

SQL

 ORDER BY city

 ORDER BY city ASC

 ORDER BY city DESC

 ORDER BY country, city ASC

SQL

 SELECT * FROM Cities ORDER BY city ASC

 SELECT city, monetaryUnit FROM Cities INNER

JOIN Countries

 ON Cities.country = Countries.country

 SELECT * FROM Cities WHERE country = ‘India’

 SELECT * FROM Cities WHERE city LIKE ‘D%’

 SELECT * FROM Cities WHERE pop2015 >= 20

CHAPTER 11

7

CHAPTER 11 – OBJECT-ORIENTED

PROGRAMMING

11.1 Classes and Objects

11.2 Arrays of Objects; Events;

 Containment

11.3 Inheritance

8

WHAT IS OBJECT ORIENTED

PROGRAMMING?

An object is like a black box.

 The internal details are hidden.

• Identifying objects and assigning responsibilities to these objects.

• Objects communicate to other objects by sending messages.

• Messages are received by the methods of an object
9

WHAT IS AN OBJECT?

 Tangible Things as a car, printer, ...

 Roles as employee, boss, ...

 Incidents as flight, overflow, ...

 Interactions as contract, sale, ...

 Specifications as colour, shape, …

WHY DO WE CARE ABOUT OBJECTS?

 Modularity - large software projects can be split up in

smaller pieces.

 Reuseability - Programs can be assembled from pre-

written software components.

 Extensibility - New software components can be

written or developed from existing ones.

11

11.1 CLASSES AND OBJECTS

 noun A word used to denote or name a person, place,

thing, quality, or act.

 verb That part of speech that expresses existence,

action, or occurrence.

 adjective Any of a class of words used to modify a

noun or other substantive by limiting, qualifying, or

specifying.

 The American Heritage Dictionary of the English Language

12

OOP ANALOGY

Classes

Methods

Properties

13

noun A word used to denote or

name a person, place, thing,

quality, or act.

verb That part of speech that

expresses existence, action, or

occurrence.

adjective Any of a class of

words used to modify a noun or

other substantive by limiting,

qualifying, or specifying.

OOP TERMINOLOGY

 An object is an encapsulation of data and procedures

that act on that data

 "data hiding" prevents inadvertent data modification

14

BUILT IN OBJECTS

 Control objects – text boxes, list boxes, buttons, etc

 To create an instance of a control object, double-click

on that control in the tool box.

 The control in the tool box is a template or blueprint of

that control.

 You cannot set properties or invoke methods until you

create an instance.

15

USER DEFINED OBJECTS

Code objects – a specific instance of a user
defined type called a class

 Class ClassName

 statements

 End Class

The statements define the properties, methods,

and events for the class

The user defined type represents the template
or blueprint for the code object

This user defined type is called a class

16

INSTANTIATING A CODE OBJECT

 An object of a class can be declared with the statements:

 Dim objectName As className

 objectName = New className(arg1, arg2, ...)

 where the second statement must appear inside a

procedure.

 The Dim statement sets up a reference to the new object.

 The object is actually created with the word New.
17

INSTANTIATING A CODE OBJECT

 The pair of statements from the previous slide can be

replaced with the following single statement, which

can appear anywhere in a program.

Dim objectName As New

className(arg1,arg2,...)

18

COMMON TASKS

Task Statement

Assign a value to a property objectName.propertyName = value

Assign the value of a property

to a variable varName = objectName.propertyName

Carry out a method objectName.methodName(arg1, ...)

Raise an event RaiseEvent eventName

19

PRIVATE DATA

Classes contain variables, called member or
instance variables that are declared with a
statement of the form

 Private m_name As String

The word "Private" is used to ensure that the
variable cannot be accessed directly from
outside the class

Values are not assigned to or read from
member variables directly, but rather through
property blocks 20

GET AND SET

Private m_name As String

Public Property Name() As String

 Get

 Return m_name

 End Get

 Set(ByVal value As String)

 m_name = value

 End Set

End Property

21

Property

block

PUBLIC VS. PRIVATE

 Items declared with the keyword Private (instead of

Dim) cannot be accessed from outside the class.

 Those declared as Public are accessible from both

inside and outside the class.

22

STUDENT CLASS: MEMBER VARIABLES

Private m_name As String

Private m_ssn As String

Private m_midterm As Double

Private m_final As Double

23

STUDENT CLASS: PROPERTY BLOCKS

Public Property Name() As String

 Get

 Return m_name

 End Get

 Set(ByVal value As String)

 m_name = value

 End Set

End Property

24

STUDENT CLASS: PROPERTY BLOCKS

Public Property SocSecNum() As String

 Get

 Return m_ssn

 End Get

 Set(ByVal value As String)

 m_ssn = value

 End Set

End Property

25

STUDENT CLASS: WRITEONLY

PROPERTY BLOCKS

Public WriteOnly Property Midterm() As Double

 Set(ByVal value As String)

 m_midterm = value

 End Set

End Property

Public WriteOnly Property Final() As Double

 Set(ByVal value As String)

 m_final = value

 End Set

End Property

26

TWO NOTES

Note 1: The last two Property blocks were

WriteOnly. We will soon see why. A property

block also can be specified as ReadOnly. If so,

it consists only of a Get procedure

Note 2: Methods are constructed with Sub and

Function procedures.

27

STUDENT CLASS: METHOD

Function CalcSemGrade() As String

 Dim grade As Double

 grade = (m_midterm + m_final) / 2

 grade = Math.Round(grade)

 Select Case grade

 Case Is >= 90

 Return "A"

 Case Is >= 80

 Return "B"

:

End Function

28

STUDENT CLASS

Class Student

 (Four Private Declaration statements)

 (Four Property Blocks)

 Function CalcSemGrade() As String

 :

 End Function

End Class 'Student

29

EXAMPLE 1: FORM

30

EXAMPLE 1: FORM CODE

Dim pupil As Student

Private Sub btnEnter_Click(…) Handles btnEnter.Click

pupil = New Student() 'Create instance of
'Student

'Read the values stored in the text boxes

pupil.Name = txtName.Text

pupil.SocSecNum = mtxtSSN.Text

pupil.Midterm = CDbl(txtMidterm.Text)

pupil.Final = CDbl(txtFinal.Text)

lstGrades.Items.Clear()

lstGrades.Items.Add("Student Recorded.")

End Sub

31

EXAMPLE 1: FORM CODE CONTINUED

Private Sub btnDisplay_Click(...) Handles

btnDisplay.Click

 Dim fmtStr As String = "{0,-20}{1,-15}{2,-4}"

 lstGrades.Items.Clear()

 lstGrades.Items.Add(String.Format(fmtStr, _

 pupil.Name, pupil.SocSecNum, _

 pupil.CalcSemGrade))

End Sub

Private Sub btnQuit_Click(...) Handles btnQuit.Click

 End

End Sub

32

EXAMPLE 1: FORM CODE CONTINUED

lstGrades.Items.Add(String.Format(fmtStr, pupil.Name,

 pupil.SocSecNum, pupil.CalcSemGrade))

33

Calls the Get property procedure

Calls the CalcSemGrade method

EXAMPLE 1: OUTPUT

34

STEPS USED TO CREATE A CLASS

1. Identify a thing in your program that is to become an
object

2. Determine the properties and methods that you
would like the object to have. (As a rule of thumb,
properties should access data, and methods should
perform operations.)

3. A class will serve as a template for the object. The
code for the class is placed in a class block of the form

 Class ClassName

 statements

 End Class
35

STEPS CONTINUED

4. For each of the properties in Step 2, declare a private

member variable with a statement of the form

 Private m_variableName As DataType

5. For each of the member variables in Step 4, create a

Property block with Get and/or Set procedures to

retrieve and assign values of the variable.

6. For each method in Step 2, create a Sub procedure or

Function procedure to carry out the task.

36

EXAMPLE 2: PFSTUDENT

 PF stands for Pass/Fail

 Example 2 has the same form and code as Example 1,

except for the CalcSemGrade method.

37

PFSTUDENT CLASS: METHOD

Function CalcSemGrade() As String

 Dim grade As Double

 grade = (m_midterm + m_final) / 2

 grade = Math.Round(grade)

 If grade >= 60 Then

 Return "Pass"

 Else

 Return "Fail"

End Function

OUTPUT: Adams, Al 123-45-6789 Pass

38

OBJECT CONSTRUCTORS

Each class has a special method called a

constructor that is always invoked when the

object is instantiated

The constructor may take arguments

 It is used to perform tasks to initialize the

object

The first line of the constructor has the form:

 Public Sub New(ByVal par1 As dataType, ...)
39

EXAMPLE 3: FORM

40

EXAMPLE 3: CIRCLE CLASS MEMBER

VARIABLES

Class Circle

 Private m_x As Integer

'Dist from left side _

'of picture box to circle

 Private m_y As Integer 'Distance from top

 ' of picture box to circle

 Private m_d As Integer 'Diameter of circle

41

EXAMPLE 3: PROPERTY BLOCK

 Public Property Xcoord() As Integer

 Get

 Return m_x

 End Get

 Set(ByVal value As Integer)

 m_x = value

 End Set

 End Property

42

EXAMPLE 3: PROPERTY BLOCK

 Public Property Ycoord() As Integer

 Get

 Return m_y

 End Get

 Set(ByVal value As Integer)

 m_y = value

 End Set

 End Property

43

EXAMPLE 3: PROPERTY BLOCK

 Public Property Diameter() As Integer

 Get

 Return m_d

 End Get

 Set(ByVal value As Integer)

 m_d = value

 End Set

 End Property

44

EXAMPLE 3: CIRCLE CLASS

CONSTRUCTOR

Public Sub New()

 'Set the initial location of the

 'circle to the upper left corner of

 'the picture box, and set its

 'diameter to 40.

 Xcoord = 0

 Ycoord = 0

 Diameter = 40

End Sub 45

EXAMPLE 3: CIRCLE CLASS METHODS

Sub Show(ByRef g As Graphics)

 'Draw a circle with given specifications

 g.DrawEllipse(Pens.Black, Xcoord, _

 Ycoord, Diameter, Diameter)

End Sub

Sub Move(ByVal distance As Integer)

 Xcoord += distance

 Ycoord += distance

End Sub

46

EXAMPLE 3: FORM’S CODE

Class frmCircle

 Dim round As New Circle()

 Private Sub btnMove_Click(...) Handles btnMove.Click

 round.Move(20)

 round.Show(picCircle.CreateGraphics)

 End Sub

 Private Sub btnQuit_Click(...) Handles btnQuit.Click

 End

 End Sub

End Class 'frmCircle

47

EXAMPLE 3: OUTPUT

48

Press the Move button ten times.

11.2 ARRAYS OF OBJECTS; EVENTS;

CONTAINMENT

"An object without an event is like a

 telephone without a ringer."

 -Anonymous
49

ARRAYS OF OBJECTS

 Arrays have a data type

 That data type can be of User Defined Type

 Therefore, we can have arrays of objects

50

EXAMPLE 1: CODE

Uses an array of Student objects. Same form design as Example 1 of

Section 11.1, but with the following code modifications.

Dim students(50) As Student 'Class-level

Dim lastStudentAdded As Integer = -1 'Class-level

Dim pupil As New Student() 'In btnEnter_Click

pupil.Name = txtName.Text

pupil.SocSecNum = txtSSN.Text

pupil.Midterm = CDbl(txtMidterm.Text)

pupil.Final = CDbl(txtFinal.Text)

'Add the student to the array

lastStudentAdded += 1

students(lastStudentAdded) = pupil

51

EVENTS

 User-defined events can be created for classes.

 The statement for triggering an event is located in the

class block

 The event is dealt with in the form’s code.

52

USER DEFINED EVENT

 Suppose that the event is named UserDefinedEvent and
has the parameters par1, par2, and so on.

 In the class block, place the following statement in the
Declarations section

Public Event UserDefinedEvent(ByVal par1 As _

 DataType1, ByVal par2 As DataType2, ...)

 The next statement should be placed at the locations in
the class block code at which the event should be
triggered

RaiseEvent UserDefinedEvent(arg1, arg2, ...)
53

RESPONDING TO EVENTS

 When declaring an object variable, the keyword

WithEvents must be added so that the object will respond

to events:

 Dim WithEvents object1 As ClassName

 The declaration line of an event procedure would be

Private Sub object1_UserDefinedEvent(ByVal par1 As _

 DataType1, ...) Handles object1.UserDefinedEvent

54

EXAMPLE 2: CODE

 Same form design as Example 3 of Section 11.1

 Addition of a text box called txtCaution

 Contains the event PositionChanged that is triggered whenever
the circle moves

 The following code modifications are incorporated in the
Declarations section of the Circle class, add

 Public Event PositionChanged(ByVal x As Integer, _

 ByVal y As Integer, ByVal d As Integer)

In the Move Sub procedure of the Circle class, add the line

 RaiseEvent PositionChanged(Xcoord, Ycoord, _

 Diameter)

55

EXAMPLE 2: CODE CONTINUED

 In the Form’s code, change the object’s declaration

statement to

 Dim WithEvents round As New Circle()

56

EXAMPLE 2: CODE CONTINUED

 Add the following event procedure:

Sub round_PositionChanged(ByVal x As Integer, _

 ByVal y As Integer, ByVal d As Integer) _

 Handles round.PositionChanged

 If (x + d > picCircle.Width) Or _

 (y + d > picCircle.Height) Then

 txtCaution.Text = "Circle Off Screen"

 End If

End Sub

57

EXAMPLE 2: OUTPUT

58

Press the Move button eleven times.

11.3 INHERITANCE

 Inheritance

 Polymorphism and Overriding

 Abstract Properties, Methods, and Classes

59

11.3 INHERITANCE

 The three relationships between classes are “use,”
“containment,” and “inheritance.”

 One class uses another class if it manipulates objects
of that class.

 Class A contains class B when a member variable of
class A makes use of an object of type class B.

60

CONTAINMENT

 Class A contains class B when a member variable of

class A is an object of type class B.

 Class DeckOfCards

 Private m_deck(51) As Card

 'Class DeckOfCards contains class Card

61

INHERITANCE RELATIONSHIP

 Inheritance is a process by which one class
(the child or derived class) inherits the
properties, methods, and events of another
class (the parent or base class).

The child has access to all of its parent’s
properties, methods and events as well as to
some of its own.

 If the parent is itself a child, then it and its
children have access to all of its parent’s
properties, methods and events.

62

INHERITANCE HIERARCHY

 GrandChild1 has access to Property A, Sub B, and Event

C from its parent and adds Function E and Sub F

63

BENEFITS OF INHERITANCE

 Allows two or more classes to share some common

features yet differentiate themselves on others.

 Supports code reusability by avoiding the extra

effort required to maintain duplicate code in multiple

classes.

64

DESIGNING OBJECTS

Programmers need the ability to identify

useful hierarchies of classes and derived

classes

Software engineers are still working on the

guidelines for when and how to establish

hierarchies

The ISA test: If one class is a more specific

case of another class, the first class should

inherit from the second class 65

INHERITS

Class Parent

 Property A

 'Property Get and Set blocks

 End Property

 Sub B()

 'Code for Sub procedure B

 End Sub

End Class

Class Child2

 Inherits Parent

 Event C()

End Class

66

Indentifies the Parent

Class: Child2 inherits

From Parent

CHILD CLASS AS PARENT

Class GrandChild1

 Inherits Child2

 Function E()

 'Code for function E

 End Function

 Sub F()

 'Code for Sub procedure F

 End Sub

End Class

67

EXAMPLE 1: FORM

68

ADDING MACHINE AND CALCULATOR

CLASSES

 Adding Machine – a machine that is capable of adding

and subtracting

 Calculator – a machine that is capable of adding,

subtracting, multiplying, and dividing

 A calculator is an adding machine

 Therefore, the calculator class should inherit from the

adding machine class
69

ADDINGMACHINE CLASS

Class AddingMachine

 Public Property FirstNumber() As Double
 Public Property SecondNumber() As Double

 Function Add() As Double
 Return FirstNumber + SecondNumber
 End Function

 Function Subtract() As Double
 Return FirstNumber - SecondNumber
 End Function
End Class 'AddingMachine

70

CALCULATOR CLASS

Class Calculator

 Inherits AddingMachine

 'Calculator inherits properties FirstNumber and

 'SecondNumber and functions add() and subtract().

 Function Multiply() As Double

 Return FirstNumber * SecondNumber

 End Function

 Function Divide() As Double

 Return FirstNumber / SecondNumber

 End Function

End Class 'Calculator

71

POLYMORPHISM AND OVERRIDING

 The set of properties, methods, and events for a class is
called the class interface

 The interface defines how the class will behave

 Programmers only need to know how to use the
interface in order to use the class

72

POLYMORPHISM

 Literally means "many forms."

 The feature that two classes can have methods that

are named the same and have essentially the same

purpose, but different implementations, is called

polymorphism

73

EMPLOYING POLYMORPHISM

A programmer may employ polymorphism in
three easy steps

First, the properties, methods, and events that
make up an interface are defined

Second, a parent class is created that performs
the functionality dictated by the interface

Finally, a child class inherits the parent and
overrides the methods that require different
implementation than the parent 74

OVERRIDABLE

The keyword Overridable is used to
designate the parent’s methods that are
overridden, and the keyword Overrides is
used to designate the child’s methods that are
doing the overriding

There are situations where a child class's
needs to access the parent class’s
implementation of a method that the child is
overriding. Visual Basic provides the keyword
MyBase to support this functionality

75

EXAMPLE 2: FORM

76

EXAMPLE 2

 The objective of this program is similar to that of Example 1 in
Section 11.2

 This program will consider two types of students
 ordinary students who receive letter grades

 pass/fail students

 We will have a Student class and a PFStudent class
 PFStudent class inherits everything from the Student class

 PFStudent class will override the CalcSemGrade method with its own

 In the class Student, replace

 Function CalcSemGrade() As String

 with

 Overridable Function CalcSemGrade() As String

 77

EXAMPLE 2: PFSTUDENT CLASS

Class PFStudent

 Inherits Student

 Overrides Function CalcSemGrade() As String

 'The student's grade for the semester

 If MyBase.CalcSemGrade = "F" Then

 Return "Fail"

 Else

 Return "Pass"

 End If

 End Function

End Class 'PFStudent

78

EXAMPLE 2: FORM’S CODE

Public Class frmGrades

 Dim students(50) As Student 'Stores the class

 Dim lastStudentAdded As Integer = -1

 'Last student added to students()

 Private Sub btnEnter_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs)
 Handles btnEnter.Click

 'Stores a student into the array.

 Dim pupil As Student

 'Create the appropriate object

 If radPassFail.Checked Then

 pupil = New PFStudent()

 Else

 pupil = New Student()

 End If

…

79

EXAMPLE 2: OUTPUT

80

ABSTRACT PROPERTIES, METHODS AND CLASSES

 Sometimes you want to insist that each child of a class
have a certain property or method that it must
implement for its own use

 Such a property or method is said to be abstract and
is declared with the keyword MustOverride

 An abstract property or method consists of just a
declaration statement with no code following it

81

EXAMPLE 3: FORM

82

The program will display the names and areas of several

different regular polygons given the length of one side.

EXAMPLE 3: CODE FOR PARENT CLASS - SHAPE

MustInherit Class Shape

 Public Property Length() As Double

 MustOverride Function Name() As String

 'Returns the name of the shape

 MustOverride Function Area() As Double

 'Returns the area of the shape

End Class 'Shape

83

Shape

Equilateral

Triangle
Square Pentagon Hexagon

EXAMPLE 3: CODE FOR CHILD CLASS – EQUILATERAL TRIANGLE

Class EquilateralTriangle

 Inherits Shape

 Overrides Function Name() As String

 'The name of this shape

 Return "Equilateral Triangle"

 End Function

 Overrides Function Area() As Double

 'Formula for the area of an equilateral triangle

 Return Length * Length * Math.Sqrt(3) / 4

 End Function

End Class 'EquilateralTriangle

84

EXAMPLE 3: CODE FOR CHILD CLASS - SQUARE

Class Square

 Inherits Shape

 Overrides Function Name() As String

 'The name of this shape

 Return "Square"

 End Function

 Overrides Function Area() As Double

 'Formula for the area of a square

 Return Length * Length

 End Function

End Class 'Square

85

EXAMPLE 3: CODE FOR CHILD CLASS - PENTAGON

Class Pentagon

 Inherits Shape

 Overrides Function Name() As String

 'The name of this shape

 Return "Pentagon"

 End Function

 Overrides Function Area() As Double

 'Formula for the area of a pentagon

 Return Length * Length * Math.Sqrt(25 + (10 *
Math.Sqrt(5))) / 4

 End Function

End Class 'Pentagon

86

EXAMPLE 3: CODE FOR CHILD CLASS - HEXAGON

Class Hexagon

 Inherits Shape

 Overrides Function Name() As String

 'The name of this shape

 Return "Hexagon"

 End Function

 Overrides Function Area() As Double

 'Formula for the area of a hexagon

 Return Length * Length * 3 * Math.Sqrt(3) / 2

 End Function

End Class 'Hexagon

87

EXAMPLE 3: FORM’S CODE

 Private Sub frmShapes_Load(ByVal sender As System.Object,

 ByVal e As System.EventArgs)
Handles MyBase.Load

 'Populate the array with shapes

 shape(0) = New EquilateralTriangle()

 shape(1) = New Square()

 shape(2) = New Pentagon()

 shape(3) = New Hexagon()

 End Sub

88

EXAMPLE 3: FORM’S CODE CONTINUED

 Private Sub btnDisplay_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs)
 Handles btnDisplay.Click

 Dim length As Double

 'Set lengths of all shapes

 length = CDbl(txtLength.Text)

 For i As Integer = 0 To 3

 shape(i).Length = length

 Next

 'Display results

 lstOutput.Items.Clear()

 For i As Integer = 0 To 3

 lstOutput.Items.Add("The " & shape(i).Name & " has area " &

 FormatNumber(shape(i).Area) & ".")

 Next

 End Sub

End Class 'frmShapes 89

EXAMPLE 3: OUTPUT

90

