
CHAPTER 8 – FILES
1

PRELIMINARIES

Private Sub Form1_Load() Handles MyBase.Load

 'read the file into an array. The file is assumed to be comma-delimited

 'Delaware, DE, 1954, 759000

 'Pennsylvania, PA, 44817, 12296000

 'New Jersey, NJ, 7417, 8135000

 Dim States() As String = IO.File.ReadAllLines("File.txt")

 'go through the array

 For i = 0 To States.GetUpperBound(0)

 Dim State() As String

 State = States(i).Split(",")

 'do something with State(0)

 Next

 End Sub

2

REALALLLINES

Read all the lines of a text-file into an

array

 Method opens a file

 Reads each line of the file

 Adds each line as an element of a string array

 Closes the file

A line is defined as a sequence of

characters followed

 carriage return

 a line feed

 a carriage return followed by a line feed

3

WRITEALLLINES

IO.File.WriteAllLines ("fileName.txt", States)

 Creates a new text file

 Copies the contents of a string array

 Places one element on each line

 Close the file

4

SET OPERATIONS

 Concat

 Contains elements of array1 and array2

 Duplication is OK

 Dim States1() As String = {"A", "B", "C", "D"}

 Dim States2() As String = {"A", "B", "G", "H"}

 Dim States3() As String = _
 States1.Concat(States2).ToArray()

5

SET OPERATIONS

 Union

 Contains elements of array1 and array2

 No Duplication

 Dim States1() As String = {"A", "B", "C", "D"}

 Dim States2() As String = {"A", "B", "G", "H"}

 Dim States3() As String = _
 States1.Union(States2).ToArray()

6

SET OPERATIONS

 Intersect

 Contains elements from array1 and array2 which

exist in both array1 and array2

 Dim States1() As String = {"A", "B", "C", "D"}

 Dim States2() As String = {"A", "B", "G", "H"}

 Dim States3() As String = _

 States1.Intersect(States2).ToArray()

7

SET OPERATIONS

 Except

 Contains elements from array1 which do not exist in

array2

 Dim States1() As String = {"A", "B", "C", "D"}

 Dim States2() As String = {"A", "B", "G", "H"}

 Dim States3() As String = _
 States1.Except(States2).ToArray()

8

OPENING A FILE

 Add OpenFileDialog control to form

 To show the Open dialog box

 OpenFileDialog1.ShowDialog()

 After selecting the file, it’ll be stored in

 OpenFileDialog1.FileName

9

SEQUENTIAL FILES
10

SEQUENTIAL FILES

 A sequential file consists of data stored in a text

file on disk.

 May be created with Visual Studio

 May also be created programmatically from

Visual Basic

11

CREATING A SEQUENTIAL FILE

1. Choose a filename – may contain up to 215

characters

2. Select the path for the folder to contain this file

3. Execute a statement like the following:

Dim sw As IO.StreamWriter =

IO.File.CreateText(filespec)

 (Opens a file for output.)

12

CREATING A SEQUENTIAL FILE…

4. Place lines of data into the file with statements

of the form:

 sw.WriteLine(datum)

5. Close the file:

 sw.Close()

Note: If no path is given for the file, it will

be placed in the Debug subfolder of bin.

13

EXAMPLE

Private Sub btnCreateFile_Click(...) _

 Handles btnCreateFile.Click

 Dim sw As IO.StreamWriter =

IO.File.CreateText("PAYROLL.TXT")

 sw.WriteLine("Mike Jones") 'Name

 sw.WriteLine(9.35) 'Wage

 sw.WriteLine(35) ‘Hours worked

 sw.WriteLine("John Smith")

 sw.WriteLine(10.75)

 sw.WriteLine(33)

 sw.Close()

End Sub

14

FILE: PAYROLL.TXT

Mike Jones

9.35

35

John Smith

10.75

33

15

CAUTION

 With IO.File.CreateText

16

• If an existing file is

opened for output,

Visual Basic will erase

the existing file and

create a new one.

ADDING ITEMS TO A SEQUENTIAL FILE

1. Execute the statement

 Dim sw As IO.StreamWriter =

 IO.File.AppendText(filespec)

 where sw is a variable name and filespec
identifies the file.

2. Place data into the file with the

WriteLine method.

3. After all the data have been recorded into
the file, close the file with the statement

 sw.Close()
17

IO.FILE.APPENDTEXT

 Will add data to the end of an existing file

 If a file does not exist, the method will create it

18

SEQUENTIAL FILE MODES

 CreateText – open for output

 OpenText – open for input

 AppendText – open for append

 A file should not be opened in two different modes

at the same time.

19

AVOIDING ERRORS

 Attempting to open a non-existent file for input

brings up a message box titled:

 FileNotFoundException

 There is a method to determine if a file exists

before attempting to open it:

 IO.File.Exists(filespec)

 will return a True if the file exists

20

TESTING FOR THE EXISTENCE OF A FILE

Dim sr As IO.StreamReader

If IO.File.Exists(filespec) Then

 sr = IO.File.OpenText(filespec)

Else

 message = "Either no file has yet been "

 message &= "created or the file named"

 message &= filespec & " is not found."

 MessageBox.Show(message, "File Not Found")

End If

21

DELETING INFO FROM A SEQUENTIAL FILE

An individual item of a file cannot be

changed or deleted directly

A new file must be created by reading each

item from the original file and recording it,

with the single item changed or deleted,

into the new file

The old file is then erased, and the new file

renamed with the name of the original file

22

DELETE AND MOVE METHODS

Delete method:

IO.File.Delete(filespec)

Move method (to change the
filespec of a file):

IO.File.Move(oldfilespec,

newfilespec)

 Note: The IO.File.Delete and IO.File.Move
methods cannot be used with open files.

23

IMPORTS SYSTEM.IO

Simplifies programs that have extensive

file handling

Place the statement

 Imports System.IO

at the top of the Code Editor, before the
Class frmName statement. Then, there

is no need to insert the prefix “IO.” before

the words StreamReader, StreamWriter,

and File 24

EXCEPTION HANDLING
25

STRUCTURED EXCEPTION HANDLING

 Two types of problems in code:

 Bugs (logic error) – something wrong with the code
the programmer has written

 Exceptions – errors beyond the control of the
programmer

 Programmer can use the debugger to find bugs;
but must anticipate exceptions in order to be able
to keep the program from terminating abruptly.

26

HOW VISUAL BASIC HANDLES EXCEPTIONS

An unexpected problem causes Visual
Basic first to throw an exception then to
handle it

 If the programmer does not explicitly
include exception-handling code in the
program, then Visual Basic handles an
exception with a default handler

The default exception handler terminates
execution, displays the exception’s
message in a dialog box and highlights the
line of code where the exception occurred

27

EXCEPTION EXAMPLE

 If the user enters a word or leaves the
input box blank in the following program,
an exception will be thrown:

Dim taxCredit As Double

Private Sub btnComputeCredit_Click(...) _

 Handles btnComputeCredit.Click

 Dim numDependants As Integer

 numDependants = CInt(InputBox(_

"How many dependants do you have?"))

 taxCredit = 1000 * numDependants

End Sub

28

EXCEPTION HANDLED BY VISUAL BASIC

29

TRY-CATCH-FINALLY BLOCK

Dim taxCredit As Double

Private Sub btnComputeCredit_Click(...)

 Handles btnComputeCredit.Click

 Dim numDependents As Integer, message As String

 Try

 numDependents = CInt(InputBox("How many

dependents?"))

 Catch

 message = "You did not answer the question " _

 & " with an integer value. We will " _

 & " assume your answer is zero."

 MessageBox.Show(message)

 numDependents = 0

 Finally

 taxCredit = 1000 * numDependents

 End Try

End Sub

30

CATCH BLOCKS

Visual Basic allows Try-Catch-Finally
blocks to have one or more specialized
Catch clauses that only trap a specific type
of exception.

The general form of a specialized Catch
clause is

 Catch exp As ExceptionName

where the variable exp will be assigned
the name of the exception. The code in this
block will be executed only when the
specified exception occurs.

31

TRY CATCH BLOCK SYNTAX

Try

 normal code

Catch exc1 As FirstException

 exception-handling code for FirstException

Catch exc2 As SecondException

 exception-handling code for SecondException

.

.

Catch

 exception-handling code for any remaining

exceptions

Finally

 clean-up code

End Try
32

EXAMPLE ERROR HANDLING

 Dim x As Integer = 0

 Dim div As Integer = 0

 Try

 div = 100 / x

 Console.WriteLine("Not executed line")

 Catch de As DivideByZeroException

 Console.WriteLine("DivideByZeroException")

 Catch ee As Exception

 Console.WriteLine("Exception")

 Finally

 Console.WriteLine("Finally Block")

 End Try

 Console.WriteLine("Result is {0}", div)

33

EXAMPLE ERROR HANDLING

 Dim x As Integer = 0

 Dim div As Integer = 0

 Try

 div = 100 / x

 Console.WriteLine("Not executed line")

 Catch de As Exception

 If de.Message = "Arithmetic operation resulted in an overflow." Then

 Console.WriteLine("Overflow")

 Else

 Console.WriteLine("DivideByZeroException")

 End If

 Finally

 Console.WriteLine("Finally Block")

 End Try

 Console.WriteLine("Result is {0}", div)

34

EXCEPTION HANDLING AND FILE ERRORS

 Exception handling can also catch file access

errors.

 File doesn't exist causes an

IO.FileNotFoundException

 If an attempt is made to delete an open file,

IO.IOException is thrown.

35

PRACTICE

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

 Try

 Dim caPop As Integer = 3405500

 Dim worldPop As Integer

 worldPop = 1970 * caPop

 txtOutput.Text = CStr(worldPop)

 Catch ex As ArgumentOutOfRangeException

 txtOutput.Text = "Oops"

 Catch exe As OverflowException

 txtOutput.Text = "Error occurred."

 End Try

 End Sub 36

USING SEQUENTIAL FILES
37

CSV FILE FORMAT

 Comma Separated Values

 Records are stored on one line with a comma

between each field

 Example:

 Mike Jones,9.35,35

 John Smith,10.75,33

38

LSV FILE FORMAT

 Line Separated Values

 Each value appears on its own line

 Up to now, this is the only type of file we have

been using

39

SPLIT EXAMPLE

For instance, suppose the String array
employees() has been declared without an
upper bound, and the String variable line
has the value “Bob,23.50,45”.

employees = line.Split(","c)

 sets the size of employees() to 3

 sets employees(0) = “Bob”

employees (1) = “23.50”

employees(2) = “45”.

40

SPLIT COMMENTS

Employees = line.Split(","c)

 In this example, the character comma is

called the delimiter for the Split function,

and the letter c specifies that the comma

has data type Character instead of String.

(If Option Strict is Off, the letter c can be

omitted.)

Any character can be used as a delimiter.

If no character is specified, the Split

function will use the space character as

delimiter.
41

EXAMPLE 2

Private Sub btnConvert_Click(...) _

 Handles btnConvert.Click

 Dim stateData(), line As String

 line = "California, 1850, Sacramento, Eureka"

 stateData = line.Split(","c)

 For i As Integer = 0 To

stateData.GetUpperBound(0)

 stateData(i) = stateData(i).Trim 'Get rid

 'of extraneous spaces

 lstOutput.Items.Add(stateData(i))

 Next

End Sub

42

California

1850

Sacramento

Eureka

EXAMPLE 3: CONVERT A CSV

FORMAT FILE TO AN LSV FORMAT

 'loop until there's something in the file

 Do While (sr.Peek() <> -1)

 'read a single line

 line = sr.ReadLine()

 'take the fields out of the line

 fields = line.Split(","c)

 'write each field onto a seperate line

 For i As Integer = 0 To fields.GetUpperBound(0)

 sw.WriteLine(fields(i).Trim)

 Next

 Loop

43

California, 1850, Sacramento, Eureka

New York, 1788, Albany, Excelsior

California

1850

Sacramento

Eureka

New York

1788

Albany

Excelsior

JOIN FUNCTION

 The reverse of the Split function is the Join function

 Join concatenates the elements of a string array into a
string containing the elements separated by a specified
delimiter.

Dim greatLakes() As String = _

 {"Huron","Ontario","Michigan","Erie","Superior"}

Dim lakes As String

lakes = String.Join(",”, greatLakes)

txtOutput.Text = lakes

OUTPUT:
Huron,Ontario,Michigan,Erie,Superior 44

COMMENTS

Files to be processed can be opened and

closed within a single procedure.

Files can also be opened just once the

instant the program is run and stay open

until the program is terminated.

To open a file once, open it in the form’s

Load procedure and put the Close method

and End statement in the click event

procedure for a button labeled “Quit.” 45

HASHTABLES
46

WORKING WITH HASHTABLE

 Collection

 a set of objects that can be access by iterating through

each element in turn

 So?

 Even an array can hold a set of objects

47

WORKING WITH HASHTABLE

 more flexibility when using a collection object

when compared to arrays

 Arrays are of fixed size

 for a Collection we can keep on adding elements to

it

48

WORKING WITH HASHTABLE

Arrays can store only one data type

 collections can hold any objects

Accessing the element is very simple and

very fast

Removing the element in Collection is very

simple

49

WORKING WITH HASHTABLE

 Array:

 MyArray(100) returns element 100

 What if I want element “George”?

 Hashtable

 MyHash.Item(“George”)

50

WORKING WITH HASHTABLE

 Declaring HashTable

 Dim MyHash As New Hashtable

51

WORKING WITH HASHTABLE

 Adding an element to the HashTable

 {hash table object}.Add(Key as Object, value as

Object)

 Ex: MyHash.Add(“George”, 45)

52

WORKING WITH HASHTABLE

 Accessing an element

{hash table object}.Item({key})

Ex: MyArray.Item(“George”)

53

WORKING WITH HASHTABLE

 Searching for an element

 {hash table object}.Contains({key})

Ex: MyArray.Contains(“George”)

54

