
ADMINISTRATIVE

 Midterm

1

ADMINISTRATIVE

 Assignment #3

 Console Application

 Writing to the console

 Console.WriteLine(“Writing to the console”)

 UserInput = Console.ReadLine()

 Using Console.ReadLine will PAUSE the program until the

user enters something.

2

EXAMPLE CODE

 Console.WriteLine(">Welcome _

 to the Gradebook program!")

 number = CInt(Console.ReadLine)

3

CHAPTER 7 - ARRAYS
4

CHAPTER 7 – ARRAYS

 7.1 Creating and Accessing Arrays

 7.2 Using Arrays

 7.3 Some Additional Types of Arrays

 7.4 Sorting and Searching

 7.5 Two-Dimensional Arrays

5

SIMPLE AND ARRAY VARIABLES

 A variable (or simple variable) is a name to

which Visual Basic can assign a single value.

 An array variable is a collection of simple

variables of the same type to which Visual Basic

can efficiently assign a list of values.

6

SIMPLE AND ARRAY VARIABLES

 Many variables

 An array variable

7

7 2

7 2

Value1 Value4 Value7 … …

Values

1 2 3 4 5 6 7 Location

SIMPLE AND ARRAY VARIABLES

Many variables

Vs.

An array variable

8

EXAMPLE

Suppose that you want to evaluate the exam
grades for 30 students and display the names
of the students whose scores are above
average.

COULD DO

Private Sub btnDisplay_Click(...) _

 Handles btnDisplay.Click

 Dim student0 As String, score0 As Double

Dim student1 As String, score1 As Double

Dim student2 As String, score2 As Double

9

EXAMPLE

Suppose that you want to evaluate the exam
grades for 30 students and display the names
of the students whose scores are above
average.

BETTER

Private Sub btnDisplay_Click(...) _

 Handles btnDisplay.Click

Dim student(29) As String, score(29) As Double

10

USING ARRAYS

Dim student(29) As String

Dim score(29) As Double

11

Array name

Upper bound of subscripts

in the array

Data type

PUTTING VALUES INTO AN ARRAY

student(0) = "Tom Brown"

12

subscript

Read: "student sub zero equals Tom Brown"

Which means that the string "Tom Brown" is being

stored at the first location in the array called

student… because all arrays begin counting at 0.

ARRAY TERMINOLOGY

Dim arrayName(n) As DataType

 0 is the "lower bound" of the array

 n is the "upper bound" of the array – the last

available subscript in this array

 The number of elements, n + 1, is the size of the

array

13

EXAMPLE 1: FORM

14

txtNumber

txtWinner

EXAMPLE 1

Private Sub btnWhoWon_Click(...) _

 Handles btnWhoWon.Click

 Dim teamName(3) As String

 Dim n As Integer

 'Place Super Bowl Winners into the array

 teamName(0) = "Packers"

 teamName(1) = "Packers"

 teamName(2) = "Jets"

 teamName(3) = "Chiefs"

 'Access array

 n = CInt(txtNumber.Text)

 txtWinner.Text = teamName(n - 1)

End Sub

15

EXAMPLE 1: OUTPUT

16

LOAD EVENT PROCEDURE

Occurs as the Form loads in memory

 Private Sub frmName_Load(...) _

 Handles MyBase.Load

The keyword MyBase refers to the form

being loaded. This event procedure is a

good place to assign values to an array.

- This is the FIRST thing that loads

- Loads BEFORE you see the form

17

LOAD EVENT PROCEDURE

Occurs as the Form loads in memory

 Private Sub frmName_Load(...) _

 Handles MyBase.Load

- Errors here are handled differently!!!
- http://blog.paulbetts.org/index.php/2010/07/20/the-case-of-the-disappearing-

onload-exception-user-mode-callback-exceptions-in-x64/

- http://stackoverflow.com/questions/4933958/vs2010-does-not-show-unhandled-

exception-message-in-a-winforms-application-on-a

- Write the code for a button

- When debugged, put it into MyBase.Load

18

EXAMPLE 2

Dim teamName(3) As String

Private Sub btnWhoWon_Click(...) Handles btnWhoWon.Click

 Dim n As Integer

 n = CInt(txtNumber.Text)

 txtWinner.Text = teamName(n - 1)

End Sub

Private Sub frmBowl_Load(...) Handles MyBase.Load

 'Place Super Bowl Winners into the array

 teamName(0) = "Packers"

 teamName(1) = "Packers"

 teamName(2) = "Jets"

 teamName(3) = "Chiefs"

End Sub

19

INITIALIZING ARRAYS

Arrays may be initialized when they are

created:

Dim arrayName() As varType =

{value0, _

 value1, value2, ..., valueN}

declares an array having upper bound N

and assigns value0 to arrayName(0),

value1 to arrayName(1), ..., and valueN to

arrayName(N).

20

INITIALIZING ARRAYS

Arrays may be initialized when they are

created:

Dim arrayName() As varType = {value0,_

 value1, value2, ..., valueN}

For Ex:

Dim Students() As String = {"Jack",
 "John", "Julie", "Jimmy", "Janet"}

21

INITIALIZING ARRAYS

Arrays may be initialized when they are

created:

Dim arrayName() As varType =

IO.File.ReadAllLines(filespec)

Opens filespec, reads all lines from it, and

stores it in arrayName

Each line in filespec is stored in one

location of arrayName

22

GETUPPERBOUND METHOD

The value of

arrayName.GetUpperBound(0)

is the upper bound of arrayName().

23

EXAMPLE

Dim teamName() As String = {"Packers", _

 "Packers", "Jets", "Chiefs"}

txtBox.Text = CStr(teamName.GetUpperBound(0))

Output: 3

24

EXAMPLE

Dim Grades() As integer = {70, 75, 80, 85, 90}

Grades.Average  80

Grades.Count  5

Grades.Min  70

Grades.Max  90

Grades.Sum  400

25

REDIM STATEMENT

The size of an array may be changed after

 it has been created.

 ReDim arrayName(m)

changes the upper bound of the array to m.

26

PRESERVE KEYWORD

 ReDim arrayName(m) resets all values to

their default. This can be prevented with the

keyword Preserve.

 ReDim Preserve arrayName(m)

resizes the array and retains as many

values as possible.

27

EXAMPLE 4: USING AN ARRAY AS A FREQUENCY TABLE

28

EXAMPLE 4: CODE

Private Sub btnAnalyze_Click(...) Handles btnAnalyze.Click

 'Count occurrences of the various letters in a sentence

 Dim sentence, letter As String

 Dim index, charCount(25) As Integer

 'Examine and tally each letter of the sentence

 sentence = (txtSentence.Text).ToUpper

 For letterNum As Integer = 1 To sentence.Length

 ‘Get a specific letter from the sentence

 letter = sentence.Substring(letterNum - 1, 1)

 If (letter >= "A") And (letter <= "Z") Then

 index = Asc(letter) - 65 'The ANSI value of "A" is 65

 charCount(index) += 1

 End If

 Next

29

EXAMPLE 4: CODE CONTINUED

 'List the tally for each letter of alphabet

 lstCount.Items.Clear()

 For i As Integer = 0 To 25

 letter = Chr(i + 65)

 If charCount(i) > 0 Then

 lstCount.Items.Add(letter & " " & _

 charCount(i))

 End If

 Next

End Sub

30

EXAMPLE 4 OUTPUT

31

OUT OF BOUNDS ERROR

The following code references an array
element that doesn't exist. This will
cause an error.

32

ASSIGNMENT STATEMENT FOR ARRAYS

If arrayOne() and arrayTwo() have been declared

with the same data type, then the statement

 arrayOne = arrayTwo

makes arrayOne() an exact duplicate of arrayTwo().

Actually, they share the same location in memory

33

ASSIGNMENT STATEMENT FOR ARRAYS

- How to make an independent copy?

 Array1 = Array2.clone

- Changing Array1 does not change Array2.

34

USER-DEFINED ARRAY-VALUED FUNCTIONS

Headers have the form

Function FunctionName(ByVal var1 As _

 Type1, ByVal var2 As Type2, ...) As _

DataType()

35

ERASING AN ARRAY

 An array can consume a large block of memory.

 After the array is no longer needed, we can

release all memory allocated to the array by

executing the following statement:

Erase arrayName

36

USING .SPLIT

'read the entire file in, 1 line per array entry

Dim arrayName() As String = IO.File.ReadAllLines("input.txt")

'iterate through all lines in the input file

For i = 0 To arrayName.GetUpperBound(0)

 'split all elements of the line into various entries

 Dim Stuff() As String

 Stuff = arrayName(i).Split(vbTab)

 MsgBox("HERE")

Next i

37

7.2 USING ARRAYS

 Ordered Arrays

 Using Part of an Array

 Merging Two Ordered

Arrays

 Passing Arrays to

Procedures

38

ORDERED ARRAYS

An array has ascending order if

[each element] ≤ [next element]

An array has descending order if

[each element] ≥ [next element]

An array is ordered if it has ascending or

descending order

39

SEARCHING ORDERED ARRAYS

Ordered arrays can be searched more efficiently

than unordered arrays

For instance, when searching an array having

ascending order, you can terminate the search

when you find an element whose value is ≥ the

sought-after value.

40

EXAMPLE 1: TASK

Given a name input by the user, determine

if it is in an increasing list of ten names

41

FLOWCHART FOR A SEARCH OF AN

INCREASING ARRAY

42

EXAMPLE 1: CODE

Dim nom() As String = {"AL", "BOB", "CARL", "DON", "ERIC", _

 "FRED", "GREG", "HERB", "IRA", "JACK"}

Private Sub btnSearch_Click(...) Handles btnSearch.Click

 Dim name2Find As String

 Dim n As Integer = -1 'Subscript of the array

 name2Find = txtName.Text.ToUpper

 Do

 n += 1 'Add 1 to n

 Loop Until (nom(n) >= name2Find) Or (n = 9)

 If nom(n) = name2Find Then

 txtResult.Text = "Found."

 Else

 txtResult.Text = "Not found."

 End If

End Sub

43

EXAMPLE 1: OUTPUT

44

USING PART OF AN ARRAY

- Sometimes we do not know how many

elements will be needed in an array

- We can declare a large array, say of 100

elements, and use a counter variable to

record the number of elements used

- In Example 2, the names are an unknown

number of companies is placed into an

array.

45

EXAMPLE 2: OUTPUT

46

txtCompany

EXAMPLE 2: CODE

'Demonstrate using part of an array

Dim stock(99) As String

Dim counter As Integer

Private Sub btnRecord_Click(...) Handles btnRecord.Click

 If (counter < 99) Then

 counter += 1 'Increment counter by 1

 stock(counter - 1) = txtCompany.Text

 txtCompany.Clear()

 txtCompany.Focus()

 txtNumber.Text = CStr(counter)

 Else

 MessageBox.Show("No space to record _

 more companies.")

 txtCompany.Clear()

 End If

End Sub

47

EXAMPLE 2: CODE CONTINUED

Private Sub btnSummarize_Click(...) _

 Handles btnSummarize.Click

 'List companies that were recorded

 lstStocks.Items.Clear()

 For i As Integer = 0 To counter - 1

 lstStocks.Items.Add(stock(i))

 Next

End Sub

48

MERGING TWO ASCENDING ARRAYS

To consolidate the two lists into a single ordered
third list:

1. Compare the two names at the top of the first
and second lists.

a) If one name alphabetically precedes the
other, copy it onto the third list and cross it
off its original list.

b) If the names are the same, copy the name
onto the third list and cross out the name
from the first and second lists.

2. Repeat Step 1 with the current top names until
you reach the end of either list.

3. Copy the names from the remaining list into the
third list.

49

PASSING ARRAYS TO PROCEDURES

An array declared in a procedure is local to

that procedure

An entire array can be passed to a Sub or

Function procedure

The header of the Sub of Function

procedure uses the name with empty set of

parentheses.

50

EXAMPLE 4

 This example uses a Function procedure to add up

the numbers in an array. The GetUpperBound

method is used to determine how many numbers

are in the array.

51

EXAMPLE 4

Private Sub btnCompute_Click(...) Handles btnCompute.Click

 Dim score() As Integer = {85, 92, 75, 68, 84, 86, _

 94, 74, 79, 88}

 txtAverage.Text = CStr(Sum(score) / 10)

End Sub

Function Sum(ByVal s() As Integer) As Integer

 Dim total As Integer = 0

 For index As Integer = 0 To s.GetUpperBound(0)

 total += s(index)

 Next

 Return total

End Function

52

PASSING AN ARRAY ELEMENT

 A single element of an array can be passed to a
procedure just like any ordinary numeric or string
variable.

Private Sub btnDisplay_Click(...) Handles _

 btnDisplay.Click

 Dim num(20) As Integer

 num(5) = 10

 lstOutput.Items.Add(Triple(num(5)))

End Sub

Private Function Triple(ByVal x As Integer) As Integer

 Return 3 * x

End Function

53

7.3 SOME ADDITIONAL TYPES OF ARRAYS

 Control Arrays

 Array of Structures

 Displaying and Comparing Structure Values

54

CONTROL ARRAYS

 Control arrays are arrays of controls, such as

labels, text boxes, etc.

 They are created in much the same way as any

other array:

Dim arrayName(n) As ControlType

 or

Dim arrayName() As ControlType

55

CONTROL ARRAYS CONTINUED

 The following statements declare control arrays.

Dim lblTitle(10) As Label

Dim txtNumber(8) As TextBox

Dim btnAmount() As Button

56

EXAMPLE 2: FORM

57

TextBox1

TextBox5

txtTotal

EXAMPLE 1

Dim lblDept(4) As Label

Dim txtDept(4) As TextBox

Private Sub frmSales_Load(...) Handles MyBase.Load

 lblDept(0) = Label1

 lblDept(1) = Label2

 lblDept(2) = Label3

 lblDept(3) = Label4

 lblDept(4) = Label5

 txtDept(0) = TextBox1

 txtDept(1) = TextBox2

 txtDept(2) = TextBox3

 txtDept(3) = TextBox4

 txtDept(4) = TextBox5
58

Array of controls

Placing controls

into arrays

EXAMPLE 1 CONTINUED

Private Sub Clear() Handles btnClear.Click

 For depNum As Integer = 1 To 5

 lblDept(depNum - 1).Text = "Department " & depNum

 txtDept(depNum).Clear()

 Next

End Sub

Private Sub btnCompute_Click(...) _

 Handles btnCompute.Click

 Dim totalSales As Double = 0

 For depNum As Integer = 1 To 5

 totalSales += CDbl(txtDept(depNum - 1).Text)

 Next

 txtTotal.Text = FormatCurrency(totalSales)

End Sub

59

EXAMPLE 1 OUTPUT

60

STRUCTURES
61

STRUCTURES

A way of grouping heterogeneous data

together

Also called a UDT (User Defined Type)

Sample structure definition:

Structure College

 Dim name As String

 Dim state As String

 Dim yearFounded As Integer

End Structure

62

STRUCTURE DEFINITION

Each subvariable in a structure is called a

Member

To declare a variable of a structure type:

 Dim college1 As College

Each member is accessed via

variable name.member name

 college1.state = "Maryland"

63

EXAMPLE 2

Structure College

 Dim name As String

 Dim state As String

 Dim yearFounded As Integer

End Structure

Dim college1, college2, collegeOlder As College

Private Sub btnFirst_Click(...) Handles btnFirst.Click

 Dim prompt As String

 college1.name = InputBox("Enter name of college.", "Name")

 college1.state = InputBox("Enter state.", "State")

 prompt = "Enter the year the first college was founded."

 college1.yearFounded = CInt(InputBox(prompt, "Year"))

End Sub

64

STRUCTURE MEMBERS

 Integer, String, Double, etc.

 Another User Defined Type

 Arrays

 Must not specify range

 Range must be set using ReDim

65

EXAMPLE 4

 This example gathers information about a student

and determines when the student will be eligible to

graduate.

66

EXAMPLE 4

Structure FullName

 Dim firstName As String

 Dim lastName As String

End Structure

Structure Student

 Dim name As FullName

 Dim credits() As Integer

End Structure

67

Structure "FullName"

contained, or nested,

inside Student

EXAMPLE 4 CONTINUED

Private Sub btnGet_Click(...) Handles btnGet.Click

 Dim numYears As Integer

 Dim person As Student

 txtResult.Clear()

 person.name.firstName = InputBox("First Name:")

 person.name.lastName = InputBox("Second Name:")

 numYears = CInt(InputBox("Number of years " & _

 "completed:"))

 ReDim person.credits(numYears - 1)

 For i As Integer = 0 To numYears - 1

 person.credits(i)=CInt(InputBox("Credits in year " _

 & i + 1))

 Next

 DetermineStatus(person)

End Sub

68

EXAMPLE 4 CONTINUED

Sub DetermineStatus(ByVal person As Student)

 Dim total As Integer = 0

 For i As Integer = 0 To person.credits.GetUpperBound(0)

 total += person.credits(i)

 Next

 If (total >= 120) Then

 txtResult.Text = person.name.firstName & " " & _

 person.name.lastName & " has enough credits" & _

 " to graduate."

 Else

 txtResult.Text = person.name.firstName & " " & _

 person.name.lastName & " needs " & _

 (120 - total) & " more credits to graduate."

 End If

End Sub

69

7.4 SORTING

7.4 SORTING AND SEARCHING

 Bubble Sort

 Shell Sort

 Searching

71

SORTING

Sorting is an algorithm for ordering an

array

We discuss two sorting algorithms:

 bubble sort

 Shell sort

Both use the swap algorithm:

temp = varl

varl = var2

var2 = temp

72

EXAMPLE 1 OUTPUT

73

txtFirstWord

txtSecondWord

txtResult

EXAMPLE 1 SWAP ALGORITHM

Private Sub btnAlphabetize_Click(...) _

 Handles btnAlphabetize.Click

 Dim firstWord, secondWord, temp As String

 firstWord = txtFirstWord.Text

 secondWord = txtSecondWord.Text

 If (firstWord > secondWord) Then

 temp = firstWord

 firstWord = secondWord

 secondWord = temp

 End If

 txtResult.Text = firstWord & " before " & _

 secondWord

End Sub

74

BUBBLE SORT ALGORITHM: N ITEMS

1. Compare the first and second items. If they are out
of order, swap them

2. Compare the second and third items. If they are out
of order, swap them

3. Repeat this pattern for all remaining pairs. The
final comparison and possible swap are between the
next-to-last and last items

4. The last item will be at its proper place

5. Do another pass through first n – 1 items

6. Repeat this process with one less item for each pass
until a pass uses only the first and second items

 75

BUBBLE SORT

Sub BubbleSort(arr As Variant, Optional numEls As Variant, Optional descending As
Boolean)

 ' account for optional arguments

 If IsMissing(numEls) Then numEls = UBound(arr)

 firstItem = LBound(arr)

 lastSwap = numEls

 Do

 indexLimit = lastSwap - 1

 lastSwap = 0

 For index = firstItem To indexLimit

 value = arr(index)

 If (value > arr(index + 1)) Xor descending Then

 ' if the items are not in order, swap them

 ' … swap values at index and index + 1

 End If

 Next

 Loop While lastSwap

End Sub

76

Demo:

http://www.so

rting-

algorithms.co

m/random-

initial-order

http://www.youtube.com/watch?v=P00xJgWzz2c
http://www.youtube.com/watch?v=P00xJgWzz2c
http://www.youtube.com/watch?v=P00xJgWzz2c
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order
http://www.sorting-algorithms.com/random-initial-order

SHELL SORT ALGORITHM

1. Begin with a gap of g = Int(n/2)

2. Compare items 0 and g, 1 and 1 + g, . . ., n -
g and n. Swap any pairs that are out of
order

3. Repeat Step 2 until no swaps are made for
gap g

4. Halve the value of g

5. Repeat Steps 2, 3, and 4 until the value of g
is 0

77

COMPARISON

 Bubble Sort

 O(n2) comparisons and swaps

 O(n) when nearly sorted

 Shell

 O(n3/2) time as shown

 O(n lg(n)) time when

nearly sorted

SEARCHING

 Sequential search

 Starts at the beginning of a list and keeps looking one

by one until the item is found or the end of the list is

reached

 For a sequential search, the list need not be sorted

 Binary Search

 Usually more efficient than sequential search

 List must be sorted

 Half-interval search

79

BINARY SEARCH: ALGORITHM

 Given: an array in ascending order and a sought-
after value, query, that may be in the array

 Repeatedly halve the range of indices where query
might be found.

 Halving routine looks at the middle value of the
current range and compares it to query with =, >,
and <.

 If middle value = query, then search is over.

 If middle value > query, then we can limit our
search to the half of the range below the middle
value.

 If middle value < query, then we can limit our
search to the half of the range above the middle
value.

80

BINARY SEARCH

1 5 7 9 11 15 17 20 24 29

81

BINARY SEARCH: VARIABLES

first – lower limit of range of values to search

last – upper limit of range of values to search

middle = Int((first + last) / 2)

a() – ordered array to be searched

foundFlag – True when query is found

Note: If query is not in the array, eventually last will
be greater than first.

Note: Initially first = 0 and last =
a.GetUpperBound(0)

82

BINARY SEARCH: CODE

Do While (first <= last) And (Not FoundFlag)

 middle = CInt((first + last) / 2)

 Select Case a(middle)

 Case query

 foundFlag = True

 Case Is > query

 last = middle – 1

 Case Is < query

 first = middle + 1

 End Select

Loop

83

BINARY SEARCH: NOTES

 If a binary search ends with foundFlag =
True, the subscript of the found item might be
useful

 This would be the case if the array were an
array of structures that was ordered with
respect to one of its members

 The binary search would serve as an efficient
table lookup process

84

7.5 TWO DIMENSIONAL ARRAYS

 One-dimensional arrays store a list of items of the
same type

 Two-dimensional arrays store a table of items of
the same type

 Consider the rows of the table as numbered 0, 1,
2, ,,, m and the columns numbered 0, 1, 2, …, n.
Then the array is declared with the statement

 Dim arrayName(m, n) As DataType

 and the item in the ith row, jth column is denoted

 arrayName(i,j)

85

ROAD-MILEAGE TABLE

Chicago LA NY Philly

Chicago 0 2054 802 738

LA 2054 0 2786 2706

NY 802 2786 0 100

Philly 738 2706 100 0

86

Dim rm(3, 3) As Double

rm(0,0)=0, rm(0,1)=2054, rm(1,2)=2786

POPULATING A TWO-DIMENSIONAL ARRAY

Dim rm(3, 3) As Double

Private Sub frmDistances_Load(...) Handles MyBase.Load

 'Fill two-dimensional array with intercity mileages

 Dim sr As IO.StreamReader = _

 IO.File.OpenText("DISTANCE.TXT")

 For row As Integer = 0 To 3

 For col As Integer = 0 To 3

 rm(row, col) = CDbl(sr.ReadLine)

 Next

 Next

 sr.Close()

End Sub

87

NOTES ON TWO-DIMENSIONAL ARRAYS

An unsized two-dimensional array can be declared
with a statement of the form

Dim arrayName(,) As varType

and a two-dimensional array can be declared and
initialized at the same time with a statement of
the form

Dim arrayName(,) As varType = {{ROW0},

{ROW1},... {ROWm}}

88

NOTES ON TWO-DIMENSIONAL ARRAYS

Dim rm(,) As Double =

 {{0, 2054, 802, 738},

 {2054, 0, 2786, 2706},

 {802, 2786, 0, 100},

 {738, 2706, 100, 0}}

89

REDIM AND TWO-DIMENSIONAL ARRAYS

An already-created array can be resized
with

 ReDim arrayName(r, s)

which loses the current contents, or with

 ReDim Preserve arrayName(r, s)

When Preserve is used, only the column
can be resized

ReDim cannot change the number of
dimensions in an array

 90

NOTES ON TWO-DIMENSIONAL ARRAYS

 The upper bound of the row (the first coordinate)

of the array:

 arrayName.GetUpperBound(0)

 The upper bound of the column (the second

coordinate) of the array:

 arrayName.GetUpperBound(1)

91

