
REPETITION
1

Chapter 6

CHAPTER 6 – REPETITION

 6.1 Do Loops

 6.2 Processing Lists of Data with Do

 Loops

 6.3 For...Next Loops

 6.4 A Case Study: Analyze a Loan

2

6.1 DO LOOPS

 A loop is one of the most important structures in

programming.

 Used to repeat a sequence of statements a number of

times.

 The Do loop repeats a sequence of statements either

as long as or until a certain condition is true.

3

DO LOOP SYNTAX

Do While condition

 statement(s)

Loop

4

Condition is tested,

If it is true,

the loop is run.

If it is false,

the statements

following the

Loop statement

are executed.

These statements are inside

the body of the loop and

are run if the condition

above is true.

PSEUDOCODE /FLOW CHART FOR A DO LOOP

5

EXAMPLE 1

Private Sub btnDisplay_Click(...) _

 Handles btnDisplay.Click

 'Display the numbers from 1 to 7

 Dim num As Integer = 1

 Do While num <= 7

 lstNumbers.Items.Add(num)

 num += 1 'Add 1 to the value of num

 Loop

End Sub

6

EXAMPLE: REPEAT REQUEST AS LONG AS RESPONSE IS INCORRECT

Dim passWord As String = ""

Do While passWord <> "SHAZAM"

 passWord = InputBox("What is the password?")

 passWord = passWord.ToUpper

Loop

7

passWord is the loop control

variable because the value stored

in passWord is what is tested to

determine if the loop should

continue or stop.

POST TEST LOOP

Do

 statement(s)

Loop Until condition

8

Loop is executed once and then the condition

is tested. If it is false, the loop is run again.

If it is frue, the statements following the

 Loop statement are executed.

EXAMPLE: REPEAT REQUEST UNTIL PROPER RESPONSE IS GIVEN

Do

 passWord = InputBox("What is the password?")

 passWord = passWord.ToUpper

Loop Until passWord = "SHAZAM"

9

PSEUDOCODE AND FLOWCHART FOR A POST-TEST LOOP

10

WHAT’S THE DIFF?

11

Do

 statement(s)

Loop Until condition

Do While condition

 statement(s)

Loop

What’s the

difference

between a

Do Until

and

Do While?

EXAMPLE 4: FORM

12

txtAmount

txtWhen

EXAMPLE 4: CODE

Private Sub btnCalculate_Click(...) Handles

 btnCalculate.Click

 Dim balance As Double, numYears As Integer

 balance = CDbl(txtAmount.Text)

 Do While balance < 1000000

 balance += 0.06 * balance

 numYears += 1

 Loop

 txtWhen.Text = "In " & numYears & _

 " years you will have a million dollars."

End Sub

13

See how bad

this code is

without

comments?

EXAMPLE 4: CODE

‘calculate how long it’ll take the balance to reach $1m

Private Sub btnCalculate_Click(...) Handles btnCalculate.Click

 Dim balance As Double, numYears As Integer

 ‘ask what the current balance is

 balance = CDbl(txtAmount.Text)

 ‘loop until the balance reaches $1m

 Do While balance < 1000000

 balance += 0.06 * balance

 numYears += 1

 Loop

 ‘display a message

 txtWhen.Text = "In " & numYears & " years you will have a million dollars."

End Sub

14

EXAMPLE 4: OUTPUT

15

COMMENTS

 Be careful to avoid infinite loops – loops that never

end

 Visual Basic allows for the use of either the While

keyword or the Until keyword at the top or the

bottom of a loop

 This textbook will use only While at the top and only

Until at the bottom

16

INFINITE LOOP

17

Why?

6.2 PROCESSING LISTS OF DATA WITH DO LOOPS

 Peek Method

 Counters and Accumulators

 Flags

 Nested Loops

18

PROCESSING LISTS OF DATA WITH DO LOOPS

 Display all or selected items from lists

 Search lists for specific items

 Perform calculations on the numerical entries of a

list

19

PEEK METHOD

 Data to be processed are often retrieved from a file

by a Do loop

 To determine if we have reached the end of the file

from which we are reading, we use the Peek method.

20

PEEK EXAMPLE

 Suppose a file has been opened as a StreamReader

object named sr.

 sr.Peek is the ANSI value of the first character of

the line about to be read with ReadLine. If the end of
the file has been reached, the value of sr.Peek is -1

21

EXAMPLE 1: DISPLAY THE TOTAL CONTENTS OF A FILE

Dim sr As IO.StreamReader = _

IO.File.OpenText("PHONE.TXT")

lstNumbers.Items.Clear()

Do While sr.Peek <> -1

 name = sr.ReadLine

 phoneNum = sr.ReadLine

 lstNumbers.Items.Add(name & " " _

 & phoneNum)

Loop

sr.Close()

22

PSEUDOCODE AND

FLOWCHART FOR

PROCESSING DATA

FROM A FILE

23

EXAMPLE 2: FORM

24

txtName

txtNumber

EXAMPLE 2: PARTIAL CODE

Do While (name <> txtName.Text) _

 And (sr.Peek <> -1)

 name = sr.ReadLine

 phoneNum = sr.ReadLine

Loop

25

As long as the name

being searched for has

not been found AND the

end of the file has not

been reached, the loop

will continue

COUNTERS AND ACCUMULATORS

 A counter is a numeric variable that keeps track

of the number of items that have been processed.

 An accumulator is a numeric variable that totals

numbers.

26

FILE COINS.TXT

 1

 1

 5

 10

 10

 25

27

Count the number of

coins and determine

the total value

EXAMPLE 3: PARTIAL CODE

Dim numCoins As Integer = 0

Dim sum As Integer = 0

Dim coin As String

Do While sr.Peek <> -1

 coin = sr.ReadLine

 numCoins += 1

 sum += CDbl(coin)

Loop

28

numCoins is a counter,

it increases by 1 each

time through the loop

sum

 is an

accumulator.

It is

used to

total up

the

 values

of the

coins.

FLAGS

 A flag is a variable that keeps track of whether a

certain situation has occurred.

 The data type most suited to flags is Boolean.

29

MORE ABOUT FLAGS

When flagVar is a variable of Boolean type,
the

statements

 If flagVar = True Then

and

 If flagVar = False Then

can be replaced by

 If flagVar Then

and

 If Not flagVar Then
30

FLAGS CONTINUED

The statements

 Do While flagVar = True

and

 Do While flagVar = False

can be replaced by

 Do While flagVar

and

 Do While Not flagVar

31

EXAMPLE 4: FORM

32

The file WORDS.TXT contains words from a spelling

bee, one word per line. Count the words and

determine whether they are in alphabetical order.

EXAMPLE 4: PARTIAL CODE

Dim word1 As String = ""

Dim orderFlag As Boolean = True

Do While (sr.Peek <> -1)

 word2 = sr.ReadLine

 wordCounter += 1

 If word1 > word2 Then

 orderFlag = False

 End If

 word1 = word2

Loop

33

NESTED LOOPS

Statements inside a loop can contain

another loop.

34

6.3 FOR…NEXT LOOPS

 Nested For … Next Loops

 Local Type Inference

35

FOR…NEXT LOOPS

 Used when we know how many times we want the

loop to execute

 A counter controlled loop

36

SAMPLE

For i As Integer = 1 To 5

 lstTable.Items.Add(i & " " & i ^ 2)

Next

The loop control variable, i, is

 initialized to 1

 tested against the stop value, 5

 incremented by 1 at the Next statement

37

SIMILAR DO WHILE LOOP

i = 1

Do While i <= 5

 lstTable.Items.Add(i & " " & i ^ 2)

 i += 1

Loop

38

FOR…NEXT LOOP SYNTAX

39

EXAMPLE 1: OUTPUT

40

EXAMPLE 1: CODE

Dim pop as Double = 300000

Dim fmtStr As String = "{0,4}{1,12:N0}"

For yr As Integer = 2008 To 2012

lstPop.Items.Add(String.Format(_

 fmtStr, yr, pop)

 pop += 0.03 * pop

Next

41

EXAMPLE 2

For i As Integer = 0 To n Step s

 lstValues.Items.Add(i)

Next

42

Control

variable

Start

value

Stop

value

Amount

to add to

i

Data

type

EXAMPLE WITH NEGATIVE STEP

For j As Integer = 10 To 1 Step -1

 lstBox.Items.Add(j)

Next

lstBox.Items.Add("Blastoff")

43

EXAMPLE: NESTED LOOPS

For i As Integer = 65 To 70

 For j As Integer = 1 To 25

 lstBox.Items.Add(Chr(i) & j)

 Next

Next

OUTPUT: A1

 A2

 A3

 :

44

Inner

loop
Outer

loop

FOR AND NEXT PAIRS

 For and Next statements must be paired.

 If one is missing, the automatic syntax checker

will complain with a wavy underline and a

message such as

“A ‘For’ must be paired with a ‘Next’.”

45

START, STOP, AND STEP VALUES

 Consider a loop beginning with

 For i As Integer = m To n Step s.

 The loop will be executed exactly once if m equals

n no matter what value s has.

 The loop will not be executed at all if m is greater

than n and s is positive, or if m is less than n and

s is negative.

46

ALTERING THE CONTROL VARIABLE

 The value of the control variable should not be

altered within the body of the loop.

 Doing so might cause the loop to repeat

indefinitely or have an unpredictable number of

repetitions.

47

NON-INTEGER STEP VALUES

 Can lead to round-off errors with the result that

the loop is not executed the intended number of

times.

 We will only use Integers for all values in the

header.

48

COMMENTS

For i As Integer = 1 To 1 Step 10

 (some statements)

Next

How many times of loops?

49

COMMENTS

For i As Integer = 2 To 1 Step 2

 (some statements)

Next

How many times of loops?

50

COMMENTS

For i As Integer = 1 To 5 Step -1

 (some statements)

Next

How many times of loops?

51

COMMENTS

 The value of the control variable should not be

altered within the body of the loop (For ... Next).

 To skip an iteration in a For .. Next loop:

Continue For

 To skip an iteration in a Do .. While loop:

 Continue Do

52

COMMENTS

For i As Integer = 1 To 5

 (some statements)

 Continue For

 (some statements)

Next

53

What will happen?

COMMENTS

 To break out of a For .. Next loop:

Exit For

 To break out of a Do .. While loop:

 Exit Do

54

PRACTICE

 Why won’t the following lines of code work as

intended?

For i As Integer = 15 To 1

 lstBox.Items.Add(i)

Next

55

PRACTICE

 When is a For ... Next loop more appropriate than

a Do loop?

56

REVIEW

57

PERFORMING A TASK ON THE COMPUTER

 Determine Output

 Identify Input

 Determine process necessary to turn given Input

into desired Output

58

FLOWCHART SYMBOLS

59

FLOWCHART SYMBOLS CONTINUED

60

FLOWCHART

EXAMPLE

61

HIERARCHY CHARTS EXAMPLE

62

FLOWCHART

63

CONTROL NAME PREFIXES

Control Prefix Example

button btn btnCompute

label lbl lblAddress

text box txt txtAddress

list box lst lstOutput

64

VARIABLES

 Declaration:

Dim speed As Double

65

Variable name Data type

• Assignment:

speed = 50

VARIABLES

Visual Basic

type

structure

Storage size

Value range

Boolean 4 bytes True or False

Byte 1 byte 0 to 255 (unsigned)

Char 2 bytes 0 to 65535 (unsigned)

Date 8 bytes January 1, 1 CE to December 31, 9999

Decimal 12 bytes +/-79,228,162,514,264,337,593,543,950,335

with no decimal point;

Double 8 bytes -1.79769313486231E308 to -4.94065645841247E-

324 for negative values; 4.94065645841247E-324

to 1.79769313486232E308 for positive values

66

VARIABLES

Visual Basic

type

structure

Storage size

Value range

Integer 4 bytes -2,147,483,648 to 2,147,483,647

Long 8 bytes -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Object 4 bytes Any type can be stored in a variable of type Object

Short 2 bytes -32,768 to 32,767

Single 4 bytes -3.402823E38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E38 for positive

values

String 10 bytes + (2 *

string length)

0 to approximately two billion Unicode characters

67

SOME TYPES OF SYNTAX ERRORS

 Misspellings

 lstBox.Itms.Add(3)

 Omissions

 lstBox.Items.Add(2 +)

 Incorrect punctuation

 Dim m; n As Integer

Displayed as blue underline in VS

68

A TYPE OF RUN-TIME ERROR

Dim numVar As Integer = 1000000

numVar = numVar * numVar

What’s wrong with the above?

69

A LOGICAL ERROR

Dim average As Double

Dim m As Double = 5

Dim n As Double = 10

average = m + n / 2

What’s wrong with the above?

70

WHAT’S WRONG WITH THIS?

71

IS THIS ALLOWED?

 Dim x as double = “23”

 dblVar = txtBox.text

 dblVar = 2 & 3

72

STRING VARIABLE

 Declaration:

Dim firstName As String

73

Variable name
Data type

• Assignment:

firstName = "Fred"

STRING LITERAL

A string literal is a sequence of

characters surrounded by quotation marks.

Examples:

Does this work?

“She said: “I’m tired.””

74

SUBSTRING METHOD

Let str be a string.

str.Substring(m, n) is the substring of length

n, beginning at position m in str.

“Visual Basic”.Substring(2, 3) is “sua”

“Visual Basic”.Substring(0, 1) is “V”

75

SCOPE

 The scope of a variable is the portion of the program

that can refer to it.

 Variables declared inside an event procedure are

said to have local scope and are only available in

the event procedure in which they are declared.

76

SCOPE

 Variables declared outside an event procedure are

said to have class-level scope and are available to

every event procedure.

 Usually declared after

 Public Class formName

 (Declarations section of Code Editor.)

77

EXAMPLE

When a = 3, b = 4

 (a + b) < 2 * a TRUE?

78

LOGICAL OPERATORS

 Used with Boolean expressions

 Not – makes a False expression True and vice

versa

 And – will yield a True if and only if both

expressions are True

 Or – will yield a True if at least one of both

expressions are True

79

IF BLOCK

The program will take a course of action

based on whether a condition is true.

If condition Then

 action1

Else

 action2

End If

80

Will be executed if

condition is true

Will be executed if

condition is false

SUB PROCEDURES

 Perform one or more related tasks

 General syntax

Sub ProcedureName()

 statements

End Sub

81

CALLING A SUB PROCEDURE

 The statement that invokes a Sub procedure is

also referred to as a Call statement.

 A Call statement looks like this:

ProcedureName()

82

EXAMPLE

83

Public Sub btnOne_Click (...) Handles _

 btnOne.Click

 Dim n As Double = 19

 Triple(n)

 txtBox.Text = CStr(n)

End Sub

Sub Triple(ByVal num As Double)

 num = 3 * num

End Sub

What is output?

EXAMPLE

84

Public Sub btnOne_Click (...) Handles _

 btnOne.Click

 Dim num As Double = 4

 Triple(num)

 txtBox.Text = CStr(num)

End Sub

Sub Triple(ByRef num As Double)

 num = 3 * num

End Sub

What is output?

NAMED CONSTANTS

Const CONSTANT_NAME As DataType _

 = value

Ex)

Const PI As Double = 3.14

Dim num As Double = 4

85

STRUCTURED PROGRAMMING

Control structures in structured
programming:
 Sequences: Statements are executed one after

another.

 Decisions: One of two blocks of program code is
executed based on a test for some condition.

 Loops (iteration): One or more statements are
executed repeatedly as long as a specified
condition is true.

86

