
TODAY’S QUOTE

 “Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as
cleverly as possible, you are–by definition–not
smart enough to debug it.”

(Brian Kernighan)





ADMIN STUFF

 Assignment #1 due

 Assignment #2

 Posted to website

 Due Oct 11

 Midterm

 Review session Oct 16

 Midterm in class Oct 18 [2 hours long]



LOGICAL OPERATORS

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

<> not equal to

ASCII values are used to decide order for strings

4



CONDITION

 Decisions are a result of evaluating a condition

 A condition is an expression involving relational
and/or logical operators

 Result of the condition is Boolean

5



LOGICAL OPERATORS

 Used with Boolean expressions

 Not – makes a False expression True and vice
versa

 And – will yield a True if and only if both
expressions are True

 Or – will yield a True if at least one of both
expressions are True

6



IF BLOCK

The program will take a course of action

based on whether a condition is true.

If condition Then

action1

ElseIf condition Then

action2

Else

action3

End If

7

Will be executed if
condition is true

Will be executed if
condition is false

Will be executed if
condition is true



EXAMPLE 1: CODE

Private Sub btnEvaluate_Click(...) _
Handles btnEvaluate.Click

Dim position As Integer = CInt(txtPosition.Text)
Select Case position

Case 1
txtOutcome.Text = "Win"

Case 2
txtOutcome.Text = "Place"

Case 3
txtOutcome.Text = "Show"

Case 4, 5
txtOutcome.Text = "You almost placed in the money."

Case Else
txtBox.Text = "Out of the money."

End Select
End Sub

8

Selector

Value Lists



CHAPTER 5
9



CHAPTER 5 - GENERAL PROCEDURES

 5.1 Sub Procedures, Part I

 5.2 Sub Procedures, Part II

 5.3 Function Procedures

 5.4 Modular Design

 5.5 A Case Study: Weekly Payroll

10



DEVICES FOR MODULARITY

 Visual Basic has two devices for breaking
problems into smaller pieces:

 Sub procedures

 Function procedures

11



SUB PROCEDURES

 Perform one or more related tasks

 General syntax

Sub ProcedureName()

statements

End Sub

12



CALLING A SUB PROCEDURE

 The statement that invokes a Sub procedure is
also referred to as a Call statement

 A Call statement looks like this:

ProcedureName()

 The rules for naming Sub procedures are the
same as the rules for naming variables
Make them self-explanatory

13



EXAMPLE

lstBox.Items.Clear()

14

Sub ExplainPurpose()

ExplainPurpose()

lstBox.Items.Add("")

lstBox.Items.Add("Program displays a sentence")

lstBox.Items.Add("identifying a sum.")

End Sub



PASSING VALUES

 You can send values to a Sub procedure

Sum(2, 3)

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

lstBox.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & "."

End Sub

 In the Sum Sub procedure, 2 will be stored in num1 and 3
will be stored in num2

15



ARGUMENTS AND PARAMETERS

Sum(2, 3)

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

16

arguments

parameters

displayed
automatically



SEVERAL CALLING STATEMENTS

ExplainPurpose()

Sum(2, 3)

Sum(4, 6)

Sum(7, 8)

Output:

Program displays a sentence identifying a sum.

17

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)
lstBox.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & "."
End Sub



PASSING STRINGS AND NUMBERS

Demo("CA", 38)

Sub Demo(ByVal state As String, ByVal pop As Double)

txtBox,Text = state & " has population " & pop & _

" million."

End Sub

 Note: The statement Demo(38, "CA") would not be valid.
The types of the arguments must be in the same order as
the types of the parameters.

18



VARIABLES AND EXPRESSIONS

Dim s As String = "CA"

Dim p As Double = 19

Demo(s, 2 * p)

Sub Demo(ByVal state As String, ByVal pop As Double)

txtBox.Text = state & " has population " & pop & _

" million."

End Sub

 Note: The variable names in the arguments need not
match the parameter names. For instance, s versus state..

19



CALLING

A Sub procedure can call another Sub procedure.

Private Sub btnAdd_Click(...) Handles btnAdd.Click

Sum(2, 3)

End Sub

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

DisplayPurpose()

lstBox.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & "."

End Sub

20



21

“Any code of your own that you
haven’t looked at for six or more
months might as well have been

written by someone else.”
(Eagleson’s Law)



5.2 SUB PROCEDURES, PART II

 Passing by Value

 Passing by Reference

 Lifetime and Scope of a Variable

 Debugging

22



BYVAL AND BYREF

 Parameters in Sub procedure headers are
proceeded by ByVal or ByRef

 ByVal stands for By Value

 ByRef stands for By Reference

23



PASSING BY VALUE

 When a variable argument is passed to a ByVal
parameter, just the value of the argument is
passed.

 After the Sub procedure terminates, the variable
has its original value.

24



EXAMPLE

25

Public Sub btnOne_Click (...) Handles _

btnOne.Click
Dim n As Double = 4

Triple(n)

txtBox.Text = CStr(n)

End Sub

Sub Triple(ByVal num As Double)

num = 3 * num

End Sub



SAME EXAMPLE: N NUM

26

Public Sub btnOne_Click (...) Handles _

btnOne.Click

Dim num As Double = 4

Triple(num)

txtBox.Text = CStr(num)

End Sub

Sub Triple(ByVal num As Double)

num = 3 * num

End Sub



PASSING BY REFERENCE

 When a variable argument is passed to a ByRef
parameter, the parameter is given the same
memory location as the argument

 After the Sub procedure terminates, the variable
has the value of the parameter

27



EXAMPLE

28

Public Sub btnOne_Click (...) Handles _

btnOne.Click

Dim num As Double = 4

Triple(num)

txtBox.Text = CStr(num)

End Sub

Sub Triple(ByRef num As Double)

num = 3 * num

End Sub



EXAMPLE: NUM N

29

Private Sub btnOne_Click(...) Handles _

btnOne_Click

Dim n As Double = 4

Triple(n)

txtBox.Text = CStr(n)

End Sub

Sub Triple(ByRef num As Double)

num = 3 * num

End Sub



LIFETIME AND SCOPE OF A VARIABLE

 Lifetime: Period during which it remains in
memory

 Scope: In Sub procedures, defined same as in
event procedures

 Suppose a variable is declared in procedure A that
calls procedure B. While procedure B executes,
the variable is alive, but out of scope

30



DEBUGGING

 Programs with Sub procedures are easier to debug

 Why?

31



32

“The first 90% of the code
accounts for the first 90% of the

development time. The
remaining 10% of the code

accounts for the other 90% of
the development time.”

(Tom Cargill)



5.3 FUNCTION PROCEDURES

 User-Defined Functions Having Several
Parameters

 User-Defined Functions Having No Parameters

 User-Defined Boolean-valued Functions

 Comparing Function Procedures with Sub
Procedures

 Named Constants

33



SOME BUILT-IN FUNCTIONS

34

Function Example Input Output

Int Int(2.6) is 2 number number

Math.Round Math.Round(1.23,1)
is 1.2

number, number number

FormatPercent FormatPercent(.12)
is 12.00%

number string

FormatNumber FormatNumber(123
45.628, 1) is
12,345.6

number, number string



FUNCTION PROCEDURES

 Function procedures (aka user-defined functions) always
return one value

 Syntax:

Function FunctionName(ByVal var1 As Type1, _

ByVal var2 As Type2, _

…) As dataType

statement(s)

Return expression

End Function

35



EXAMPLE: FORM

36

txtFullName

txtFirstName



EXAMPLE: CODE

Private Sub btnDetermine_Click(...) _

Handles btnDetermine.Click

Dim name As String

name = txtFullName.Text

txtFirstName.Text = FirstName(name)

End Sub

Function FirstName(ByVal name As String) As String

Dim firstSpace As Integer

firstSpace = name.IndexOf(" ")

Return name.Substring(0, firstSpace)

End Function

37

Function
call

Return
statement



EXAMPLE: FORM

38

txtSideOne

txtSideTwo

txtHyp



EXAMPLE: CODE

Private Sub btnCalculate_Click(...) _

Handles btnCalculate.Click

Dim a, b As Double

a = CDbl(txtSideOne.Text)

b = CDbl(txtSideTwo.Text)

txtHyp.Text = CStr(Hypotenuse(a, b))

End Sub

Function Hypotenuse(ByVal a As Double, _

ByVal b As Double) As Double

Return Math.Sqrt(a ^ 2 + b ^ 2)

End Function

39



FUNCTION HAVING NO PARAMETERS

Private Sub btnDisplay_Click(...) _
Handles btnDisplay.Click

txtBox.Text = Saying()
End Sub

Function Saying() As String
Dim strVar As String
strVar = InputBox("What is your" _

& " favorite saying?")
Return strVar

End Function

40



COMPARING FUNCTION PROCEDURES

WITH SUB PROCEDURES

 Subs are accessed using a Call statement

 Functions are called where you would expect to find a
literal or expression

 For example:

 result = functionCall

 lstBox.Items.Add (functionCall)

41



FUNCTIONS VS. PROCEDURES

 Both can perform similar tasks

 Both can call other subs and functions

 Use a function when you want to return one and
only one value

42



NAMED CONSTANTS

 Constant: value does not change during program
execution (different from variable)

(ex. Minimum wage, sales tax rate, name of a
master file, mathematical constants, etc.)

43



NAMED CONSTANTS

Const CONSTANT_NAME As DataType = value

Const PI As Double = 3.14

Dim num As Double = 4

44



NAMED CONSTANTS

 Convention

 Uppercase letters with words separated by underscore.

 Place them in the Declaration sections.

45



NAMED CONSTANTS

Const INTEREST_RATE As Double = 0.04

Const MINIMUM_VOTING_AGE As Integer = 18

Const MASTER_FILE As String = 3.14

interstEarned =
INTEREST_RATE * CDbl(txtAmount.Text)

If (age >= MINIMUM_VOTING_AGE) Then

MessageBox.Show(“You are eligible to vote”)

End If

Dim sr As IO.StreamReader =
IO.File.OpenText(MASTER_FILE)

46



47

“If debugging is the process of
removing bugs, then

programming must be the
process of putting them in.”

(Edsger W. Dijkstra)



5.4 MODULAR DESIGN

 Top-Down Design

 Structured Programming

 Advantages of Structured Programming

48



DESIGN TERMINOLOGY

 Large programs can be broken down into smaller
problems

 "divide-and-conquer" approach called "stepwise
refinement“

 Stepwise refinement is part of top-down design
methodology

49



TOP-DOWN DESIGN

 General problems are at the top of the design

 Specific tasks are near the end of the design

 Top-down design and structured programming are
techniques to enhance programmers' productivity

50



TOP-DOWN DESIGN CRITERIA

 The design should be easily readable and
emphasize small module size

 Modules proceed from general to specific as you
read down the chart

 The modules, as much as possible, should be
single minded. That is, they should only perform a
single well-defined task

 Modules should be as independent of each other
as possible, and any relationships among modules
should be specified

51



TOP-LEVEL DESIGN CHART

52



DETAILED CHART

53



STRUCTURED PROGRAMMING

Control structures in structured
programming

 Sequences: Statements are executed one after
another

 Decisions: One of two blocks of program code
is executed based on a test for some condition

 Loops (iteration): One or more statements are
executed repeatedly as long as a specified
condition is true

54



ADVANTAGES OF STRUCTURED

PROGRAMMING

 Goal to create correct programs that are easier to

 write

 understand

 Modify

 "GOTO –less" programming

55



COMPARISON OF FLOW CHARTS

56



EASY TO WRITE

 Allows programmer to first focus on the big
picture and take care of the details later

 Several programmers can work on the same
program at the same time

 Code that can be used in many programs is said to
be reusable

57



EASY TO DEBUG

 Procedures can be checked individually

 A driver program can be set up to test modules
individually before the complete program is ready

 Using a driver program to test modules (or stubs)
is known as stub testing

58



EASY TO UNDERSTAND

 Interconnections of the procedures reveal the
modular design of the program

 The meaningful procedure names, along with
relevant comments, identify the tasks
performed by the modules

 The meaningful variable names help the
programmer to recall the purpose of each
variable

Because a structured program is self-
documenting, it can easily be deciphered by
another programmer

59



EXAMPLE

Private Sub btnDetermine_Click() Handles btnDetermine.Click

Dim num As Integer

num = 2

MsgBox(Function1(num))

End Sub

Function Function1(ByVal num As Integer) As Integer

Debug.Print(num)

num = num ^ 2

Function1 = Function2(num)

End Function

Function Function2(ByVal num As Integer) As Integer

Debug.Print(num)

num = num ^ 2

Function2 = Function1(num)

End Function

60

What’s the result?



FUNCTION EXAMPLE

 How to calculate Factorials?

 Ex: 5! = 5 * 4 * 3 * 2 * 1 = 120




