
TODAY’S QUOTE

 “Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as
cleverly as possible, you are–by definition–not
smart enough to debug it.”

(Brian Kernighan)





ADMIN STUFF

 Assignment #1 due

 Assignment #2

 Posted to website

 Due Oct 11

 Midterm

 Review session Oct 16

 Midterm in class Oct 18 [2 hours long]



LOGICAL OPERATORS

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

<> not equal to

ASCII values are used to decide order for strings

4



CONDITION

 Decisions are a result of evaluating a condition

 A condition is an expression involving relational
and/or logical operators

 Result of the condition is Boolean

5



LOGICAL OPERATORS

 Used with Boolean expressions

 Not – makes a False expression True and vice
versa

 And – will yield a True if and only if both
expressions are True

 Or – will yield a True if at least one of both
expressions are True

6



IF BLOCK

The program will take a course of action

based on whether a condition is true.

If condition Then

action1

ElseIf condition Then

action2

Else

action3

End If

7

Will be executed if
condition is true

Will be executed if
condition is false

Will be executed if
condition is true



EXAMPLE 1: CODE

Private Sub btnEvaluate_Click(...) _
Handles btnEvaluate.Click

Dim position As Integer = CInt(txtPosition.Text)
Select Case position

Case 1
txtOutcome.Text = "Win"

Case 2
txtOutcome.Text = "Place"

Case 3
txtOutcome.Text = "Show"

Case 4, 5
txtOutcome.Text = "You almost placed in the money."

Case Else
txtBox.Text = "Out of the money."

End Select
End Sub

8

Selector

Value Lists



CHAPTER 5
9



CHAPTER 5 - GENERAL PROCEDURES

 5.1 Sub Procedures, Part I

 5.2 Sub Procedures, Part II

 5.3 Function Procedures

 5.4 Modular Design

 5.5 A Case Study: Weekly Payroll

10



DEVICES FOR MODULARITY

 Visual Basic has two devices for breaking
problems into smaller pieces:

 Sub procedures

 Function procedures

11



SUB PROCEDURES

 Perform one or more related tasks

 General syntax

Sub ProcedureName()

statements

End Sub

12



CALLING A SUB PROCEDURE

 The statement that invokes a Sub procedure is
also referred to as a Call statement

 A Call statement looks like this:

ProcedureName()

 The rules for naming Sub procedures are the
same as the rules for naming variables
Make them self-explanatory

13



EXAMPLE

lstBox.Items.Clear()

14

Sub ExplainPurpose()

ExplainPurpose()

lstBox.Items.Add("")

lstBox.Items.Add("Program displays a sentence")

lstBox.Items.Add("identifying a sum.")

End Sub



PASSING VALUES

 You can send values to a Sub procedure

Sum(2, 3)

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

lstBox.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & "."

End Sub

 In the Sum Sub procedure, 2 will be stored in num1 and 3
will be stored in num2

15



ARGUMENTS AND PARAMETERS

Sum(2, 3)

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

16

arguments

parameters

displayed
automatically



SEVERAL CALLING STATEMENTS

ExplainPurpose()

Sum(2, 3)

Sum(4, 6)

Sum(7, 8)

Output:

Program displays a sentence identifying a sum.

17

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)
lstBox.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & "."
End Sub



PASSING STRINGS AND NUMBERS

Demo("CA", 38)

Sub Demo(ByVal state As String, ByVal pop As Double)

txtBox,Text = state & " has population " & pop & _

" million."

End Sub

 Note: The statement Demo(38, "CA") would not be valid.
The types of the arguments must be in the same order as
the types of the parameters.

18



VARIABLES AND EXPRESSIONS

Dim s As String = "CA"

Dim p As Double = 19

Demo(s, 2 * p)

Sub Demo(ByVal state As String, ByVal pop As Double)

txtBox.Text = state & " has population " & pop & _

" million."

End Sub

 Note: The variable names in the arguments need not
match the parameter names. For instance, s versus state..

19



CALLING

A Sub procedure can call another Sub procedure.

Private Sub btnAdd_Click(...) Handles btnAdd.Click

Sum(2, 3)

End Sub

Sub Sum(ByVal num1 As Double, ByVal num2 As Double)

DisplayPurpose()

lstBox.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & "."

End Sub

20



21

“Any code of your own that you
haven’t looked at for six or more
months might as well have been

written by someone else.”
(Eagleson’s Law)



5.2 SUB PROCEDURES, PART II

 Passing by Value

 Passing by Reference

 Lifetime and Scope of a Variable

 Debugging

22



BYVAL AND BYREF

 Parameters in Sub procedure headers are
proceeded by ByVal or ByRef

 ByVal stands for By Value

 ByRef stands for By Reference

23



PASSING BY VALUE

 When a variable argument is passed to a ByVal
parameter, just the value of the argument is
passed.

 After the Sub procedure terminates, the variable
has its original value.

24



EXAMPLE

25

Public Sub btnOne_Click (...) Handles _

btnOne.Click
Dim n As Double = 4

Triple(n)

txtBox.Text = CStr(n)

End Sub

Sub Triple(ByVal num As Double)

num = 3 * num

End Sub



SAME EXAMPLE: N NUM

26

Public Sub btnOne_Click (...) Handles _

btnOne.Click

Dim num As Double = 4

Triple(num)

txtBox.Text = CStr(num)

End Sub

Sub Triple(ByVal num As Double)

num = 3 * num

End Sub



PASSING BY REFERENCE

 When a variable argument is passed to a ByRef
parameter, the parameter is given the same
memory location as the argument

 After the Sub procedure terminates, the variable
has the value of the parameter

27



EXAMPLE

28

Public Sub btnOne_Click (...) Handles _

btnOne.Click

Dim num As Double = 4

Triple(num)

txtBox.Text = CStr(num)

End Sub

Sub Triple(ByRef num As Double)

num = 3 * num

End Sub



EXAMPLE: NUM N

29

Private Sub btnOne_Click(...) Handles _

btnOne_Click

Dim n As Double = 4

Triple(n)

txtBox.Text = CStr(n)

End Sub

Sub Triple(ByRef num As Double)

num = 3 * num

End Sub



LIFETIME AND SCOPE OF A VARIABLE

 Lifetime: Period during which it remains in
memory

 Scope: In Sub procedures, defined same as in
event procedures

 Suppose a variable is declared in procedure A that
calls procedure B. While procedure B executes,
the variable is alive, but out of scope

30



DEBUGGING

 Programs with Sub procedures are easier to debug

 Why?

31



32

“The first 90% of the code
accounts for the first 90% of the

development time. The
remaining 10% of the code

accounts for the other 90% of
the development time.”

(Tom Cargill)



5.3 FUNCTION PROCEDURES

 User-Defined Functions Having Several
Parameters

 User-Defined Functions Having No Parameters

 User-Defined Boolean-valued Functions

 Comparing Function Procedures with Sub
Procedures

 Named Constants

33



SOME BUILT-IN FUNCTIONS

34

Function Example Input Output

Int Int(2.6) is 2 number number

Math.Round Math.Round(1.23,1)
is 1.2

number, number number

FormatPercent FormatPercent(.12)
is 12.00%

number string

FormatNumber FormatNumber(123
45.628, 1) is
12,345.6

number, number string



FUNCTION PROCEDURES

 Function procedures (aka user-defined functions) always
return one value

 Syntax:

Function FunctionName(ByVal var1 As Type1, _

ByVal var2 As Type2, _

…) As dataType

statement(s)

Return expression

End Function

35



EXAMPLE: FORM

36

txtFullName

txtFirstName



EXAMPLE: CODE

Private Sub btnDetermine_Click(...) _

Handles btnDetermine.Click

Dim name As String

name = txtFullName.Text

txtFirstName.Text = FirstName(name)

End Sub

Function FirstName(ByVal name As String) As String

Dim firstSpace As Integer

firstSpace = name.IndexOf(" ")

Return name.Substring(0, firstSpace)

End Function

37

Function
call

Return
statement



EXAMPLE: FORM

38

txtSideOne

txtSideTwo

txtHyp



EXAMPLE: CODE

Private Sub btnCalculate_Click(...) _

Handles btnCalculate.Click

Dim a, b As Double

a = CDbl(txtSideOne.Text)

b = CDbl(txtSideTwo.Text)

txtHyp.Text = CStr(Hypotenuse(a, b))

End Sub

Function Hypotenuse(ByVal a As Double, _

ByVal b As Double) As Double

Return Math.Sqrt(a ^ 2 + b ^ 2)

End Function

39



FUNCTION HAVING NO PARAMETERS

Private Sub btnDisplay_Click(...) _
Handles btnDisplay.Click

txtBox.Text = Saying()
End Sub

Function Saying() As String
Dim strVar As String
strVar = InputBox("What is your" _

& " favorite saying?")
Return strVar

End Function

40



COMPARING FUNCTION PROCEDURES

WITH SUB PROCEDURES

 Subs are accessed using a Call statement

 Functions are called where you would expect to find a
literal or expression

 For example:

 result = functionCall

 lstBox.Items.Add (functionCall)

41



FUNCTIONS VS. PROCEDURES

 Both can perform similar tasks

 Both can call other subs and functions

 Use a function when you want to return one and
only one value

42



NAMED CONSTANTS

 Constant: value does not change during program
execution (different from variable)

(ex. Minimum wage, sales tax rate, name of a
master file, mathematical constants, etc.)

43



NAMED CONSTANTS

Const CONSTANT_NAME As DataType = value

Const PI As Double = 3.14

Dim num As Double = 4

44



NAMED CONSTANTS

 Convention

 Uppercase letters with words separated by underscore.

 Place them in the Declaration sections.

45



NAMED CONSTANTS

Const INTEREST_RATE As Double = 0.04

Const MINIMUM_VOTING_AGE As Integer = 18

Const MASTER_FILE As String = 3.14

interstEarned =
INTEREST_RATE * CDbl(txtAmount.Text)

If (age >= MINIMUM_VOTING_AGE) Then

MessageBox.Show(“You are eligible to vote”)

End If

Dim sr As IO.StreamReader =
IO.File.OpenText(MASTER_FILE)

46



47

“If debugging is the process of
removing bugs, then

programming must be the
process of putting them in.”

(Edsger W. Dijkstra)



5.4 MODULAR DESIGN

 Top-Down Design

 Structured Programming

 Advantages of Structured Programming

48



DESIGN TERMINOLOGY

 Large programs can be broken down into smaller
problems

 "divide-and-conquer" approach called "stepwise
refinement“

 Stepwise refinement is part of top-down design
methodology

49



TOP-DOWN DESIGN

 General problems are at the top of the design

 Specific tasks are near the end of the design

 Top-down design and structured programming are
techniques to enhance programmers' productivity

50



TOP-DOWN DESIGN CRITERIA

 The design should be easily readable and
emphasize small module size

 Modules proceed from general to specific as you
read down the chart

 The modules, as much as possible, should be
single minded. That is, they should only perform a
single well-defined task

 Modules should be as independent of each other
as possible, and any relationships among modules
should be specified

51



TOP-LEVEL DESIGN CHART

52



DETAILED CHART

53



STRUCTURED PROGRAMMING

Control structures in structured
programming

 Sequences: Statements are executed one after
another

 Decisions: One of two blocks of program code
is executed based on a test for some condition

 Loops (iteration): One or more statements are
executed repeatedly as long as a specified
condition is true

54



ADVANTAGES OF STRUCTURED

PROGRAMMING

 Goal to create correct programs that are easier to

 write

 understand

 Modify

 "GOTO –less" programming

55



COMPARISON OF FLOW CHARTS

56



EASY TO WRITE

 Allows programmer to first focus on the big
picture and take care of the details later

 Several programmers can work on the same
program at the same time

 Code that can be used in many programs is said to
be reusable

57



EASY TO DEBUG

 Procedures can be checked individually

 A driver program can be set up to test modules
individually before the complete program is ready

 Using a driver program to test modules (or stubs)
is known as stub testing

58



EASY TO UNDERSTAND

 Interconnections of the procedures reveal the
modular design of the program

 The meaningful procedure names, along with
relevant comments, identify the tasks
performed by the modules

 The meaningful variable names help the
programmer to recall the purpose of each
variable

Because a structured program is self-
documenting, it can easily be deciphered by
another programmer

59



EXAMPLE

Private Sub btnDetermine_Click() Handles btnDetermine.Click

Dim num As Integer

num = 2

MsgBox(Function1(num))

End Sub

Function Function1(ByVal num As Integer) As Integer

Debug.Print(num)

num = num ^ 2

Function1 = Function2(num)

End Function

Function Function2(ByVal num As Integer) As Integer

Debug.Print(num)

num = num ^ 2

Function2 = Function1(num)

End Function

60

What’s the result?



FUNCTION EXAMPLE

 How to calculate Factorials?

 Ex: 5! = 5 * 4 * 3 * 2 * 1 = 120




