
REVIEW OF CHAPTER 2

HOW TO DEVELOP A VB APPLICATION

Design the Interface for the user

 Literally draw the GUI

 Drag buttons/text boxes/etc onto form

Determine which events the controls on

the window should recognize

Write the code for those

events

2

WHAT HAPPENS WHEN PROGRAM IS RUNNING

1. VB monitors the controls for events

2. If event occurs, it runs procedures assigned to

that event

3. If no event exists, it goes back to #1.

3

INITIAL VISUAL BASIC SCREEN

4

PROPERTIES WINDOW

5

Properties Settings

Selected

control

CONTROL NAME PREFIXES

Control Prefix Example

button btn btnCompute

label lbl lblAddress

text box txt txtAddress

list box lst lstOutput

6

POSITIONING CONTROLS

7

Proximity

line

ALIGNING CONTROLS

8

Snap line

CODE EDITOR

9

Method

Name

box

Class

Name

box

Code Editor

tab

Form Designer

tab

SAMPLE CODE

Public Class frmDemo

 Private Sub txtFirst_TextChanged(...)

 Handles txtFirst.TextChanged

 txtFirst.ForeColor = Color.Blue

 End Sub

End Class

10

CHAPTER 3
11

VARIABLES, INPUT, AND OUTPUT

 3.1 Numbers

 3.2 Strings

 3.3 Input and Output

12

ARITHMETIC OPERATIONS

 Numbers are called numeric literals

 Five arithmetic operations in Visual Basic

 + addition

 - subtraction

 * multiplication

 / division

 ^ exponentiation

13

NUMERIC EXPRESSIONS

 2 + 3

 3 * (4 + 5)

 2 ^ 3

14

DISPLAYING NUMBERS

Let n be a number or a numeric expression.

What does the statement

 lstBox.Items.Add(n)

 do?

15

EXAMPLE 1: FORM

16

EXAMPLE 1: CODE AND OUTPUT

Private Sub btnCompute_Click (...)

 Handles btnCompute.Click

 lstResults.Items.Add(5)

 lstResults.Items.Add(2 * 3)

 lstResults.Items.Add((2 ^ 3) – 1)

End Sub

 What is the result?

17

NUMERIC VARIABLE

18

A numeric variable is a name to which a

number can be assigned.

Examples:

speed

distance

interestRate

balance

VARIABLES

 Declaration:

Dim speed As Double

19

Variable name

Data type

• Assignment:

speed = 50

VARIABLES

Visual Basic

type

structure

Storage size

Value range

Boolean 4 bytes True or False

Byte 1 byte 0 to 255 (unsigned)

Char 2 bytes 0 to 65535 (unsigned)

Date 8 bytes January 1, 1 CE to December 31, 9999

Decimal 12 bytes +/-79,228,162,514,264,337,593,543,950,335

with no decimal point;

Double 8 bytes -1.79769313486231E308 to -4.94065645841247E-

324 for negative values; 4.94065645841247E-324

to 1.79769313486232E308 for positive values

20

VARIABLES

Visual Basic

type

structure

Storage size

Value range

Integer 4 bytes -2,147,483,648 to 2,147,483,647

Long 8 bytes -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Object 4 bytes Any type can be stored in a variable of type Object

Short 2 bytes -32,768 to 32,767

Single 4 bytes -3.402823E38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E38 for positive

values

String 10 bytes + (2 *

string length)

0 to approximately two billion Unicode characters

21

INITIALIZATION

 Numeric variables are automatically initialized to 0:

Dim varName As Double

 To specify a nonzero initial value

Dim varName As Double = 50

22

NUMERIC EXPRESSIONS

Numeric variables can be used in numeric expressions

Dim balance As Double = 1000

lstBox.Items.Add(1.05 * balance)

23

ASSIGNMENT STATEMENT

Dim numVar1 As Double = 5

Dim numVar2 As Double = 4

numVar1 = 3 * numVar2

lstBox.Items.Add(numVar1)

24

INCREMENTING

 To add 1 to the numeric variable var

var = var + 1

 Or as a shortcut

var += 1

 Or as a generalization

var += numeric expression

25

BUILT-IN FUNCTIONS

 Functions return a value

Math.Sqrt(9) returns 3

Int(9.7) returns 9

Math.Round(2.7) is 3

26

INTEGER DATA TYPE

 Variables of type Double can be assigned both whole
numbers and numbers with decimals

 The statement

 Dim varName As Integer

 declares a numeric variable that can only be assigned
whole number values between about -2 billion and 2
billion

27

MULTIPLE DECLARATIONS

Dim a, b As Double

Two other types of multiple-declaration statements are

Dim a As Double, b As Integer

Dim c As Double = 2, b As

 Integer = 5

28

PARENTHESES

 Parentheses should be used liberally in numeric

expressions

 In the absence of parentheses, the operations are

carried out in the following order:

 ^, * and /, + and -

29

THREE TYPES OF ERRORS

 Syntax error

 Run-time error

 Logic error

30

SOME TYPES OF SYNTAX ERRORS

 Misspellings

 lstBox.Itms.Add(3)

 Omissions

 lstBox.Items.Add(2 +)

 Incorrect punctuation

 Dim m; n As Integer

Displayed as blue underline in VS

31

A TYPE OF RUN-TIME ERROR

Dim numVar As Integer = 1000000

numVar = numVar * numVar

What’s wrong with the above?

32

A LOGICAL ERROR

Dim average As Double

Dim m As Double = 5

Dim n As Double = 10

average = m + n / 2

What’s wrong with the above?

33

ERROR LIST WINDOW

 Dim m; n As Double

 lstResults.Items.Add(5

 lstResults.Items.Add(a)

34

 – VARIABLES, INPUT, AND OUTPUT

 3.1 Numbers

 3.2 Strings

 3.3 Input and Output

35

STRING LITERAL

A string literal is a sequence of

characters surrounded by quotation marks.

Examples:

"hello"

"123-45-6789"

"#ab cde?"

36

STRING LITERAL

A string literal is a sequence of

characters surrounded by quotation marks.

Examples:

Does this work?

“She said: “I’m tired.””

37

STRING VARIABLE

A string variable is a name to which a

string value can be assigned.

Examples:

country

ssn

word

firstName

38

STRING VARIABLE

 Declaration:

Dim firstName As String

39

Variable name
Data type

• Assignment:

firstName = "Fred"

STRING VARIABLE

You can declare a string variable and

assign it a value at the same time.

Dim firstName As String = "Fred"

40

ADD METHOD

Let str be a string literal or variable. Then,

 lstBox.Items.Add(str)

displays the value of str in the list box.

41

STRING VARIABLE

You can assign the value of one string variable to another

Dim strVar1 As String = "Hello"

Dim strVar2 As String = "Goodbye"

strVar2 = strVar1

lstOutput.Items.Add(strVar2)

42

VARIABLES AND STRINGS

Private Sub btnDisplay_Click(...) Handles

 btnDisplay.Click

 Dim president As String

 president = "George Washington"

 lstOutput.Items.Add("president")

 lstOutput.Items.Add(president)

End Sub

43

OPTION STRICT

 Visual Basic allows numeric variables to be assigned

strings and vice versa, a poor programming practice.

 To prevent such assignments, set Option Strict

to On in the Options dialog box.

44

OPTION STRICT -CONTINUED

 Select Options from the Tools menu

 In left pane, expand Projects and Solution

 Select VB Defaults

 Set Option Strict to On

45

TEXT BOXES FOR INPUT & OUTPUT

The contents of a text box is always a string

 Input example

 strVar = txtBox.Text

Output example

 txtBox.Text = strVar

46

DATA CONVERSION

 Because the contents of a text box is always a

string, sometimes you must convert the input or

output

 dblVar = CDbl(txtBox.Text)

 txtBox.Text = CStr(numVar)

47

Converts a String to a Double

Converts a number to a string

WIDENING AND NARROWING

 Widening: assigning an Integer value to a Double

variable

 Widening always works. (Every Integer is a

Double.)

 No conversion function needed.

 Narrowing: assigning a Double value to an

Integer variable

 Narrowing might not work. (Not every Double is

an Integer.)

 Narrowing requires Cint.

 Will loose information (everything after the decimal

place)

 Strings can be given a different initial value as
follows

48

AUTO CORRECTION

49

WITH OPTION STRICT ON

Dim dblVar As Double, intVar As Integer

Dim strVar As String

Not Valid: Replace with:

intVar = dblVar intVar = CInt(dblVar)

dblVar = strVar dblVar = CDbl(strVar)

strVar = intVar strVar = CStr(intVar)

50

CONCATENATION

Combining two strings to make a new
string

quote1 = "We'll always "

quote2 = "have Paris."

quote = quote1 & quote2

txtOutput.Text = quote & " - Humphrey Bogart"

Displays

We'll always have Paris. - Humphrey Bogart

51

APPENDING

 To append str to the string variable var

var = var & str

 Or as a shortcut

var &= str

52

APPENDING EXAMPLE

Dim var As String = "Good"

var &= "bye"

txtBox.Text = var

53

STRING PROPERTIES AND METHODS

"Visual".Length is 6.

.length calculates the length of the string.

Varname = “blah”

Varname.length

54

STRING PROPERTIES AND METHODS

"Visual".ToUpper is VISUAL

 .ToUpper makes everything upper case.

Varname = “blah”

55

STRING PROPERTIES AND METHODS

"123 Hike".ToLower is “123 hike”

 .ToLower makes everything lower case

Varname = “Blah”

56

STRING PROPERTIES AND METHODS

"a" & " bcd ".Trim & "efg" is “abcdefg”

 .trim removes leading/trailing spaces

Varname = “ blah “

Varname.trim

57

STRING PROPERTIES

 Can apply a method onto a method

 What does this do?

Dim varname As String = "Tim Hortons"

varname.ToUpper.Replace("I", "O").ToLower()

58

POSITIONS IN A STRING

Positions of characters in a string are

numbered 0, 1, 2, ….

Consider the string “Visual Basic”.

Position 0: V

Position 1: i

Position 7: B

Substring “al” begins at position 4

59

SUBSTRING METHOD

Let str be a string

str.Substring(m, n)

is the substring of length n, beginning at position

m in str

“Visual Basic”.Substring(2, 3) ?

 “Visual Basic”.Substring(0, 1) ?

60

INDEXOF METHOD

Let str1 and str2 be strings.

 str1.IndexOf(str2)

is the position of the first occurrence of str2

in str1

(Note: Has value -1 if str2 is not a substring

of str1.)

"Visual Basic".IndexOf("is") is 1.

"Visual Basic".IndexOf("si") is 9.

"Visual Basic".IndexOf("ab") is -1.

61

THE EMPTY STRING

The string "" (NOT " "), which
contains no characters, is called the
empty string or the zero-length string

The statement lstBox.Items.Add("")

skips a line in the list box

The contents of a text box can be cleared
with either the statement

 txtBox.Clear()

 or the statement
 txtBox.Text = ""

62

INITIAL VALUE OF A STRING

 By default the initial value is Nothing

 Strings can be given a different initial value as

follows:

 Dim name As String = "Fred"

63

COMMENTS

Private Sub btnCompute_Click (...)

 Handles btnCompute.Click

 'Calculate the balance in an account

 Dim rate As Double 'Annual rate of interest

 Dim curBalance As Double 'Current balance

64

INTERNAL DOCUMENTATION

1. Other people can easily understand the program

2. You can understand the program when you read it

later

3. Long programs are easier to read because the

purposes of individual pieces can be determined at

a glance

65

LINE-CONTINUATION CHARACTER

 A long line of code can be continued on another line

by using an underscore (_) preceded by a space

msg = "I'm going to make " & _

 "him an offer he can't refuse."

66

SCOPE

 The scope of a variable is the portion of the program

that can refer to it

 Variables declared inside an event procedure are

said to have local scope and are only available in

the event procedure in which they are declared

67

SCOPE

 Variables declared outside an event procedure are

said to have class-level scope and are available to

every event procedure.

 Usually declared after

 Public Class formName

 (Declarations section of Code Editor.)

68

AUTOMATIC COLORIZATION

Comments – green

String literals – maroon

Keywords – blue

Note: Keywords are words such as Sub,

Handles, Private, With, and End that have

special meaning in Visual Basic. They

cannot be used as variable names.

69

COMMENTING

 Commenting is critical

 For yourself and others

 Have to do it right

70

COMMENTING

71

COMMENTING

72

COMMENTING

73

COMMENTING

74

 – VARIABLES, INPUT, AND OUTPUT

 3.1 Numbers

 3.2 Strings

 3.3 Input and Output

75

FORMATTING OUTPUT WITH FUNCTIONS

76

Function String Value

FormatNumber(12345.628, 1) 12,345.6

FormatCurrency(12345.628, 2) $12,345.63

FormatPercent(0.183, 0) 18%

FORMATTING OUTPUT WITH ZONES

 Use a fixed-width font such as Courier New

 Divide the characters into zones with a format string.

Dim fmtStr As String = "{0, 15}{1, 10}{2, 8}"

lstOutput.Items.Add(String.Format(fmtStr, _

 data0, data1, data2))

77

FORMATTING OUTPUT WITH ZONES

 Use a fixed-width font such as Courier New

 Divide the characters into zones with a format string.

Dim fmtStr As String = "{0, 15}{1, 10}{2, 8}"

Debug.Print(String.Format(fmtStr, "abc",

"def", "ghi"))

  “ abc def ghi”

78

FORMATTING OUTPUT WITH ZONES

Dim fmtStr As String = "{0, -15}{1, 10}{2, 8}"

lstOutput.Items.Add(String.Format(fmtStr, _

 data0, data1, data2))

Here, 15 was preceded by a minus sign. This

produces left justification in 0th zone. There will

be right justification in the other two zones.

79

FORMATTING OUTPUT WITH ZONES

 Use a fixed-width font such as Courier New

 Divide the characters into zones with a format string.

Dim fmtStr As String = "{0,-15}{1, 10}{2, 8}"

Debug.Print(String.Format(fmtStr, "abc",

"def", "ghi"))

  “abc def ghi”

80

READING DATA FROM FILES

 Data can be stored in text files and accessed with a

StreamReader object.

 We assume that the text files have one piece of data

per line.

81

SAMPLE FILE: PAYROLL.TXT

Mike Jones

9.35

35

John Smith

10.75

33

82

Name

Hourly wage

Number of hours worked

STEPS TO USE STREAMREADER

Execute a statement of the form

 Dim readerVar As IO.StreamReader = _

 IO.File.OpenText(filespec)

 or the pair of statements

 Dim readerVar As IO.StreamReader

 readerVar = IO.File.OpenText(filespec)

83

STEPS TO USE STREAMREADER

Read items of data in order, one at a time,

from the file with the ReadLine method.

 strVar = readerVar.ReadLine

After the desired items have been read from

the file, terminate the communications link

 readerVar.Close()

84

EXAMPLE USING STREAMREADER

Dim name As String

Dim wage, hours As Double

Dim sr As IO.StreamReader = _

 IO.File.OpenText("PAYROLL.TXT")

name = sr.ReadLine

wage = CDbl(sr.ReadLine)

hours = CDbl(sr.ReadLine)

lstBox.Items.Add(name & ": " & wage * hours)

OUTPUT: Mike Jones: 327.25

85

Mike Jones

9.35

35

John Smith

10.75

33

COMMENT ON EXAMPLE

Consider

lstBox.Items.Add(name & ": " & wage * hours)

The ampersand automatically converted

wage * hours into a string before concatenating.

We didn’t have to convert wage * hours with

CStr.

86

GETTING INPUT FROM AN INPUT DIALOG

stringVar = InputBox(prompt, title)

fileName = InputBox("Enter the name " _

 & "of the file containing the " & _

 "information.", "Name of File")

87

Title

Prompt

USING A MESSAGE BOX FOR OUTPUT

MessageBox.Show(prompt, title)

MessageBox.Show("Nice try, but no

cigar.", _

"Consolation")

88

Title

Prompt

MASKED TEXT BOX CONTROL

Similar to an ordinary text box, but has a Mask

property that restricts what can be typed into the

masked text box.

89

Tasks button

MASKED TEXT BOX CONTROL

90

Click the Tasks button to reveal Set

Mask property.

Click Set Mask to invoke Input Mask

dialog box.

INPUT MASK DIALOG BOX

91

MASK

92

 A Mask setting is a sequence of characters,

with 0, L, and & having special meanings.

0 Placeholder for a digit.

L Placeholder for a letter.

& Placeholder for a character

SAMPLE MASKS

93

State abbreviation: LL

Phone number: 000-0000

Social Security Number: 000-00-0000

License plate: &&&&&&

