
WELCOME TO CMPT 110

1

Chapter 1

COURSE INFO

 Instructor: Richard Frank – rfrank@sfu.ca

 TA: Kyle Demeule – kdd2@sfu.ca

 CMPT 110 (D100) Programming in Visual Basic

 Class Hours

 Tuesday: 10:30am-11:20am @ AQ 3005

 Thursday: 9:30am-11:20am @ C 9000

 Office: TBD

 Office Hours: Tuesday 9:30am – 10:20am

 http://www.cs.sfu.ca/CourseCentral/110/rfrank/

2

CALENDAR OBJECTIVE/DESCRIPTION

 Topics will include

 User interfaces

 Objects

 Event-driven programming

 Program design

 File and data management

3

OBJECTIVES

 Introduction to programming in the event-driven
paradigm using the Visual Basic language.

 We’ll cover

 Forms

 Controls

 Events

 Menus

 Objects

 Subprograms

 Modular design

 Decisions and repetition

 File and data management

 Special features

 This is an entry-level course, not a developer's seminar.
4

GRADING

Assignments 30%
 5 assignments

Midterm exam 30%

 Week 7 - Oct 16

Final exam 40%

 As per SFU date/location

5

REQUIRED BOOKS

 An Introduction to Programming Using Visual

Basic 2010, (w/VS2010 DVD), 8/E, D.I. Schneider ,

Prentice-Hall, 2010

 Text comes with DVD to install VB at home

6

ACADEMIC HONESTY STATEMENT

 Academic honesty plays a key role in our efforts to maintain

a high standard of academic excellence and integrity.

Students are advised that ALL acts of intellectual

dishonesty will be handled in accordance with the SFU

Academic Honesty and Student Conduct Policies

(http://www.sfu.ca/policies/Students/index.html). Students

are also encouraged to read the School's policy information

page (http://www.cs.sfu.ca/undergrad/Policies/).

 Cheaters will be caught  0.

7

http://www.cs.sfu.ca/undergrad/Policies/

SYLLABUS

8

SYLLABUS

9

YOUR BACKGROUND?

 Any programming?

 “Expert” at Windows?

 Excel formulas (if, lookup, …)?

 Installing programs?

10

CHAPTER 1 - INTRO
11

Chapter 1

CHAPTER 1 - AN INTRODUCTION TO

COMPUTERS AND PROBLEM SOLVING

 1.1 An Introduction to Computers

 1.2 Windows, Folders, and Files

 1.3 Program Development Cycle

 1.4 Programming Tools

12

COMMUNICATING WITH THE COMPUTER

 Machine language

 low level, hard for humans to understand

 Visual Basic

 high level, understood by humans, consists of

instructions such as Click, If, Do

 Usable in other applications (Word, Excel…)

13

COMPUTERS AND COMPLICATED TASKS

 Tasks are broken down into instructions that can

be expressed by a computer language

 A program is a sequence of instructions

 Programs can be only a few instructions or

millions of lines of instructions

 Examples?

 In real life?

 In computers?

14

ALL PROGRAMS HAVE IN COMMON

 Take data and manipulate it to produce a result

 Input – Process – Output

 Input – from files, the keyboard, or other input device

 Output – to the monitor, printer, file, or other output

device

15

HARDWARE AND SOFTWARE

 Hardware

 The physical components of a computer

 Keyboard

 Disk drive

 Monitor

 Software

 The instructions that tell the computer what to do

16

PROGRAMMER AND USER

 Programmer – the person who solves the problem

and writes the instructions for the computer

 User – any

person who

uses the

program

written by the

programmer

17

PROBLEM SOLVING

 Developing the solution to a problem

 Algorithm – a step by step series of instructions to

solve a problem

18

PROBLEM SOLVING

Problems are solved by carefully reading
them to determine what data are given
and what outputs are requested

Then a step-by-step procedure is devised to
process the given data and produce the
requested output

This procedure is called an algorithm

Finally, a computer program is written to
carry out the algorithm

 19

VISUAL BASIC 2010

 BASIC originally

developed at Dartmouth

in the early 1960s

 Visual Basic created by

Microsoft in 1991

 Visual Basic 2010 is

similar to original

Visual Basic, but more

powerful

20

XP VERSUS VISTA

 Windows XP Windows Vista

21

1.2 WINDOWS, FOLDERS, AND FILES

 Windows and Its Little Windows

 Mouse Actions

 Files and Folders

22

WINDOWS AND ITS LITTLE WINDOWS

 Difference between Windows and windows.

 Title bar indicates if window is active.

23

MOUSE ACTIONS

 Clicking (single-clicking) means pressing and

releasing the left mouse button once.

 Double-clicking means clicking the left mouse

button twice in quick succession

 Note: An important Windows convention is

that clicking selects an object so you can give

Windows or the document further directions

about it, but double-clicking tells Windows to

perform a default operation.

24

MOUSE ACTIONS

Pointing means moving your mouse
across your desk until the mouse pointer is
over the desired object on the screen

Hovering means to linger the mouse at a
particular place and wait for a message or
menu to appear

Dragging usually moves a Windows
object. If you see a sentence that begins
“Drag the . . . ”, you need to click on the
object and hold

25

FILES AND FOLDERS

 File: holds programs or data. Its name usually

consists of letters, digits, and spaces.

 Folder: contains files and other folders (called

subfolders).

26

KEY TERMS IN USING FOLDERS AND FILES

27

Term Example

Disk Hard disk, CD

File name PAYROLL

Extension .TXT

Filename PAYROLL.TXT

Path TextFiles\PAYROLL.TXT

Filespec C:\TextFiles\PAYROLL.TXT

WINDOWS EXPLORER

 Used to view, organize

and manage folders

and files.

 Manage: copy, move,

delete

28

BIOGRAPHICAL HISTORY OF

COMPUTING
29

Chapter 1

1800S

 George Boole – devised Boolean

algebra

 Charles Babbage – created "analytical

engine“

 Augusta Ada Byron – first computer

programmer

 Herman Hollerith – founder of

company that would become IBM

30

1930S

 Alan Turing – deciphered German

code in WWII; father of artificial

intelligence

 John V. Atanasoff – inventor of first

electronic digital special purpose

computer

31

1940S

 Howard Aiken – built large scale
digital computer, Mark I

 Grace M. Hopper – originated term
"debugging"; pioneered development
and use of COBOL

 John Mauchley and J. Presper
Eckert – built first large scale
general purpose computer, ENIAC

32

1940S CONTINUED

 John von Neumann – developed

stored program concept

 Maurice V. Wilkes – built EDSAC,

first computer to use stored program

concept

 John Bardeen, Walter Brattain,

and William Shockley – developed

transistor that replaced vacuum

tubes

33

1950S

 John Backus – created Fortran;

early user of interpreters and

compilers

 Reynold B. Johnson – invented the

disk drive

 Donald L. Shell – developed

efficient sorting algorithm

34

1960S

 John G. Kemeny and
Thomas E. Kurtz – invented
BASIC

Corrado Bohm and Guiseppe
Jacopini – proved that any
program can be written with
only 3 structures: sequence,
decision, and loops

Edsger W. Dijkstra –
stimulated move to structured
programming by declaring
"GOTO" harmful

35

1960S CONTINUED

 Harlan B. Mills – advocated

use of structured programming

 Donald E. Knuth – wrote

definitive work on algorithms.

 Ted Hoff, Stan Mazer,

Robert Noyce, and Frederico

Faggin – developed first

microprocessor

36

1960S CONTINUED

 Douglas Engelbart – invented computer mouse

37

1970S

Ted Codd - software architect;
laid the groundwork for
relational databases

Paul Allen and Bill Gates -
cofounders of Microsoft
Corporation

 Stephen Wozniak and
Stephen Jobs - cofounders of
Apple Computer Inc.

Dan Bricklin and Dan
Fylstra - wrote VisiCalc, the
first electronic spreadsheet
program

38

1970S CONTINUED

Dennis Ritchie - creator of the
C programming language.

Ken Thompson - created the
Unix operating system

Alan Kay – developer of
Smalltalk, a pure object-
oriented language

Don Chamberlain - created a
database programming
language, later known as SQL,

39

1980S

Phillip “Don” Estridge - at
IBM directly responsible for
the success of the personal
computer.

Mitchell D. Kapor -
cofounder of Lotus
Corporation

Tom Button - group product
manager for applications
programmability at
Microsoft;
 headed the team that

developed QuickBasic, QBasic,
and Visual Basic.

40

1980S CONTINUED

Alan Cooper - considered the
father of Visual Basic.

Tim Berners–Lee - father of the
World Wide Web.

Charles Simonyi - father of
Word.

Bjarne Stroustrup - creator of
the C++ programming language.

Richard M. Stallman - founded
Free Software Foundation

41

1990S

 Marc Andreessen - inventor of the

Web browser.

 James Gosling – creator of Java.

 Linus Torvalds - developed the

popular Linux operating system.

42

2000S

 Sergey M. Brin and Lawrence E.

Page – founders of Google

 Mark Zuckerberg – founder of

Facebook.

 Steve Chen, Chad Hurley, and

Jawed Karim – founders of

YouTube.

43

1.3 PROGRAM DEVELOPMENT CYCLE

 Performing a Task on the Computer

 Program Planning

44

TERMINOLOGY TIP

 A computer program may also be called:

 Project

 Application

 Solution

45

PROGRAM DEVELOPMENT CYCLE

 Software refers to a collection of instructions for

the computer

 The computer only knows how to do what the

programmer tells it to do

 Therefore, the programmer has to know how to

solve problems

 Take big problem, break it down

 Break it down further

 Repeat until you get to very fundamental steps

46

PERFORMING A TASK ON THE COMPUTER

 Determine Output

 Identify Input

 Determine process necessary to turn given Input

into desired Output

47

PICTORIAL REPRESENTATION OF THE

PROBLEM SOLVING PROCESS

48

PROBLEM-SOLVING: APPROACH LIKE

ALGEBRA CLASS

 How fast is a car traveling if it goes 50 miles in 2

hours?

 Output: a number giving the speed in miles per

hour

 Input: the distance and time the car has traveled

 Process: speed = distance / time

49

PROGRAM PLANNING

 A recipe is a good example of a plan

 Ingredients and amounts are determined by what

you want to bake

 Ingredients are input

 The way you combine them is the processing

 What is baked is the output

50

PROGRAM PLANNING TIPS

 Always have a plan before trying to write a

program

 The more complicated

the problem, the more

complex the plan

must be

 Planning and testing

before coding saves

time coding

51

PROGRAM DEVELOPMENT CYCLE

1. Analyze: Define the problem.

2. Design: Plan the solution to the problem.

3. Choose the interface: Select the objects (text
boxes, buttons, etc.).

4. Code: Translate the algorithm into a

programming language.

5. Test and debug: Locate and remove any

errors in the program.

6. Complete the documentation: Organize all

the materials that describe the program.

52

DOCUMENTATION

 Why is documentation important?

53

1.4 PROGRAMMING TOOLS

 Flowcharts

 Pseudocode

 Hierarchy Chart

 Direction of Numbered NYC Streets Algorithm

 Class Average Algorithm

54

PROGRAMMING TOOLS

Three tools are used to convert algorithms
into computer programs:

 Flowchart - Graphically depicts the logical

steps to carry out a task and shows how the
steps relate to each other.

 Pseudocode - Uses English-like phrases with
some Visual Basic terms to outline the
program.

 Hierarchy chart - Shows how the different
parts of a program relate to each other.

55

PROBLEM SOLVING EXAMPLE

 How many stamps do you use when mailing a

letter?

 One rule of thumb is to use one stamp for every

five sheets of paper or fraction thereof.

56

ALGORITHM

1. INPUT: Request the number of sheets of paper;

call it Sheets

2. PROCESSING: Divide Sheets by 5

3. PROCESSING: Round the quotient up to the next

highest whole number; call it Stamps

4. OUTPUT: Reply with the number Stamps

57

FLOWCHARTS

 Graphically depict the

logical steps to carry out

a task and show how the

steps relate to each

other.

58

FLOWCHART SYMBOLS

59

FLOWCHART SYMBOLS CONTINUED

60

FLOWCHART EXAMPLE

61

PSEUDOCODE

 Uses English-like phrases with some Visual Basic

terms to outline the task.

62

PSEUDOCODE EXAMPLE

Determine the proper number of stamps

for a letter

 Read Sheets (input)

 Set the number of stamps to Sheets / 5

(processing)

 Round the number of stamps up to the next

whole number (processing)

 Display the number of stamps (output)

63

HIERARCHY CHARTS

Show how the different parts of a program

relate to each other

Hierarchy charts may also be called

 structure charts

 HIPO (Hierarchy plus Input-Process-Output)

charts

 top-down charts

 VTOC (Visual Table of Contents) charts

64

HIERARCHY CHARTS EXAMPLE

65

DIVIDE-AND-CONQUER METHOD

 Used in problem solving – take a large problem

and break it into smaller problems solving the

small ones first

 Breaks a problem down into modules

66

STATEMENT STRUCTURES

 Sequence – follow instructions from one line to the

next without skipping over any lines

 Decision - if the answer to a question is “Yes” then

one group of instructions is executed. If the

answer is “No,” then another is executed

 Looping – a series of instructions are executed

over and over

67

SEQUENCE FLOW CHART

68

DECISION FLOW CHART

69

LOOPING FLOW CHART

70

DIRECTION OF NUMBERED NYC STREETS

ALGORITHM

 Problem: Given a street number of a one-way

street in New York City, decide the direction of

the street, either eastbound or westbound

 Discussion: in New York City even numbered

streets are Eastbound, odd numbered streets are

Westbound

71

FLOWCHART

72

PSEUDOCODE

Determine the direction of a numbered NYC

street

Get street

If street is even Then

 Display Eastbound

Else

 Display Westbound

End If

73

HIERARCHY CHART

74

MOVIE RATING EXAMPLE

 Kids want to watch the movie, “Avatar”.

 Decide whether he or she can watch the movie

based on his or her age.

75

Solution?

CLASS AVERAGE ALGORITHM

Problem: Calculate and report the grade-
point average for a class

Discussion: The average grade equals the
sum of all grades divided by the number of
students

Output: Average grade

Input: Student grades

Processing: Find the sum of the grades; count the
number of students; calculate average

76

FLOWCHART

• We need a loop to

read and then add

the grades for each

student in the class

• Inside the loop, we

also need to count

the number of

students in the class

• grade = sum of

grades / number of

students

77

PSEUDOCODE

Program: Determine the average grade of a class

Initialize Counter and Sum to 0

Do While there are more data

 Get the next Grade

 Add the Grade to the Sum

 Increment the Counter

Loop

Compute Average = Sum / Counter

Display Average

78

HIERARCHY CHART

79

COMMENTS

When tracing a flowchart, start at the

start symbol and follow the flow lines to

the end symbol

Testing an algorithm at the flowchart

stage is known as desk checking

Flowcharts, pseudocode, and hierarchy

charts are program planning tools that are

not dependent on the programming

language being used

80

COMMENTS CONTINUED

 There are four primary logical programming

constructs

 sequence

 decision

 loop

 unconditional branch

 Appear in some languages as GOTO statements

 Involves jumping from one place in a program to another

 Structured programming uses the sequence, decision, and

loop constructs but forbids the unconditional branch

81

TIPS AND TRICKS OF FLOWCHARTS

Flowcharts are time-consuming to write

and difficult to update

For this reason, professional programmers

are more likely to favor pseudocode and

hierarchy charts

Because flowcharts so clearly illustrate the

logical flow of programming techniques,

they are a valuable tool in the education of

programmers

82

TIPS AND TRICKS OF PSEUDOCODE

 There are many styles of pseudocode

 Some programmers use an outline form

 Some use a form that looks almost like a

programming language

 The pseudocode in the case studies of this text

focus on the primary tasks to be performed by the

program and leaves many of the routine details to

be completed during the coding process

83

TIPS AND TRICKS OF HIERARCHY CHARTS

 Many people draw rectangles around each item in

a hierarchy chart

 In the text, rectangles are omitted to encourage

the use of hierarchy charts by making them easier

to draw

84

FOR NEXT WEEK

 Read Chapter 2 & Appendix D

 Install Visual Studio 2010

85

PROGRAMMING IS USEFUL!

86

